Multi-environment trial of corn silage, Year * Loc * Variety with covariate
Corn silage yields for maize in 5 years at 7 districts for 10 hybrids.
A data frame with 256 observations on the following 5 variables.
year
year, 1990-1994
env
environment/district, 1-7
gen
genotype, 1-10
yield
dry-matter silage yield for corn
chu
corn heat units, thousand degrees Celsius
Used with permission of Chris Theobald.
The trials were carried out in seven districts in the maritime provinces of Eastern Canada. Different fields were used in successive years. The covariate CHU (Corn Heat Units) is the accumulated average daily temperatures (thousands of degrees Celsius) during the growing season at each location.
Chris M. Theobald and Mike Talbot and Fabian Nabugoomu, 2002. A Bayesian Approach to Regional and Local-Area Prediction From Crop Variety Trials. Journ Agric Biol Env Sciences, 7, 403–419. https://doi.org/10.1198/108571102230
library(agridat) data(theobald.covariate) dat <- theobald.covariate libs(lattice) xyplot(yield ~ chu|gen, dat, type=c('p','smooth'), xlab = "chu = corn heat units", main="theobald.covariate - yield vs heat") ## Not run: # REML estimates (Means) in table 3 of Theobald 2002 libs(lme4) dat <- transform(dat, year=factor(year)) m0 <- lmer(yield ~ -1 + gen + (1|year/env) + (1|gen:year), data=dat) round(fixef(m0),2) ## End(Not run) ## Not run: # Use JAGS to fit Theobald (2002) model 3.2 with 'Expert' prior libs(reshape2) ymat <- acast(dat, year+env~gen, value.var='yield') chu <- acast(dat, year+env~., mean, value.var='chu', na.rm=TRUE) chu <- as.vector(chu - mean(chu)) # Center the covariate dat$yr <- as.numeric(dat$year) yridx <- as.vector(acast(dat, year+env~., mean, value.var='yr', na.rm=TRUE)) dat$loc <- as.numeric(dat$env) locidx <- acast(dat, year+env~., mean, value.var='loc', na.rm=TRUE) locidx <- as.vector(locidx) jdat <- list(nVar = 10, nYear = 5, nLoc = 7, nYL = 29, yield = ymat, chu = chu, year = yridx, loc = locidx) libs(rjags) m1 <- jags.model(file=system.file(package="agridat", "files/theobald.covariate.jag"), data=jdat, n.chains=2) # Table 3, Variety deviations from means (Expert prior) c1 <- coda.samples(m1, variable.names=(c('alpha')), n.iter=10000, thin=10) s1 <- summary(c1) effs <- s1$statistics[,'Mean'] rev(sort(round(effs - mean(effs), 2))) # Perfect match (different order?) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.