Wheat yields in 7 years with genetic and environment covariates
Yield of Durum wheat, 7 genotypes, 6 years, with 16 genotypic variates and 16 environment variates.
data("vargas.wheat1.covs") data("vargas.wheat1.traits")
The vargas.wheat1.covs
dataframe has 6 observations on the following 17 variables.
year
year, 1990-1995
MTD
Mean daily max temperature December, deg C
MTJ
January
MTF
February
MTM
March
mTD
Mean daily minimum temperature December, deg C
mTJ
January
mTF
February
mTM
March
PRD
Monthly precipitation in December, mm
PRJ
January
PRF
February
PRM
March
SHD
a numeric vector
SHJ
January
SHF
February
SHM
March
The vargas.wheat1.traits
dataframe has 126 observations on the following 19 variables.
year
year, 1990-1995
rep
replicate, 3 levels
gen
genotype, 7 levels
yield
yield, kg/ha
ANT
anthesis, days after emergence
MAT
maturity, days after emergence
GFI
grainfill, MAT-ANT
PLH
plant height, cm
BIO
biomass above ground, kg/ha
HID
harvest index
STW
straw yield, kg/ha
NSM
spikes / m^2
NGM
grains / m^2
NGS
grains per spike
TKW
thousand kernel weight, g
WTI
weight per tiller, g
SGW
spike grain weight, g
VGR
vegetative growth rate, kg/ha/day, STW/ANT
KGR
kernel growth rate, mg/kernel/day
Conducted in Ciudad Obregon, Mexico.
Mateo Vargas and Jose Crossa and Ken Sayre and Matthew Renolds and Martha E Ramirez and Mike Talbot, 1998. Interpreting Genotype x Environment Interaction in Wheat by Partial Least Squares Regression, Crop Science, 38, 679–689. https://doi.org/10.2135/cropsci1998.0011183X003800030010x
Data provided by Jose Crossa.
library(agridat) ## Not run: data(vargas.wheat1.covs) data(vargas.wheat1.traits) libs(pls) libs(reshape2) # Yield as a function of non-yield traits Y0 <- vargas.wheat1.traits[,c('gen','rep','year','yield')] Y0 <- acast(Y0, gen ~ year, value.var='yield', fun=mean) Y0 <- sweep(Y0, 1, rowMeans(Y0)) Y0 <- sweep(Y0, 2, colMeans(Y0)) # GxE residuals Y1 <- scale(Y0) # scaled columns X1 <- vargas.wheat1.traits[, -4] # omit yield X1 <- aggregate(cbind(ANT,MAT,GFI,PLH,BIO,HID,STW,NSM,NGM, NGS,TKW,WTI,SGW,VGR,KGR) ~ gen, data=X1, FUN=mean) rownames(X1) <- X1$gen X1$gen <- NULL X1 <- scale(X1) # scaled columns m1 <- plsr(Y1~X1) loadings(m1)[,1,drop=FALSE] # X loadings in Table 1 of Vargas biplot(m1, cex=.5, which="x", var.axes=TRUE, main="vargas.wheat1 - gen ~ trait") # Vargas figure 2a # Yield as a function of environment covariates Y2 <- t(Y0) X2 <- vargas.wheat1.covs rownames(X2) <- X2$year X2$year <- NULL Y2 <- scale(Y2) X2 <- scale(X2) m2 <- plsr(Y2~X2) loadings(m2)[,1,drop=FALSE] # X loadings in Table 2 of Vargas ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.