Root mean square error (RMSE)
This function computes the root mean square error (RMSE), which is defined as:
$rmse(λ, φ)=√{\frac{1}{t_{f}-t_{0}}\int_{t_{0}}^{t_{f}}(v_{mod}(t,λ, φ)-v_{ref}(t,λ, φ))^{2}dt}$
where λ is the longitude, φ is the latitude, t is the time, t_0 is the initial time step, t_f is the final time time step, v_{mod} is a modelled variable and v_{ref} is the corresponding reference variable.
intFun.rmse(mod, ref)
mod |
An R object (model output data) |
ref |
An R object (reference data) |
An R object that gives the root mean square error when comparing
mod
against ref
.
library(raster) # create two raster stacks for(i in 1:100) { mod <- raster::raster(matrix(runif(100,-1,1), ncol=10)) ref <- raster::raster(matrix(runif(100,-2,2), ncol=10)) assign(paste('mod', i , sep='_'), mod) assign(paste('ref', i , sep='_'), ref) } my.list.mod <- lapply(ls(pattern='mod_'), get) my.list.ref <- lapply(ls(pattern='ref_'), get) mod <- do.call(stack, my.list.mod) ref <- do.call(stack, my.list.ref) # compute RMSE rmse <- intFun.rmse(mod,ref) plot(rmse); text(rmse, digits=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.