Creates an ANOVA table in APA style based output of ezANOVA command from ez package
Creates an ANOVA table in APA style based output of ezANOVA command from ez package
apa.ezANOVA.table( ez.output, correction = "GG", table.title = "", filename, table.number = NA )
ez.output |
Output object from ezANOVA command from ez package |
correction |
Type of sphercity correction: "none", "GG", or "HF" corresponding to none, Greenhouse-Geisser and Huynh-Feldt, respectively. |
table.title |
String containing text for table title |
filename |
(optional) Output filename document filename (must end in .rtf or .doc only) |
table.number |
Integer to use in table number output line |
APA table object
## Not run: # ** Example 1: Between Participant Predictors # library(apaTables) library(ez) # See format where one row represents one PERSON # Note that participant, gender, and alcohol are factors print(goggles) # Use ezANOVA # Be sure use the options command, as below, to ensure sufficient digits options(digits = 10) goggles_results <- ezANOVA(data = goggles, dv = attractiveness, between = .(gender, alcohol), participant , detailed = TRUE) # Make APA table goggles_table <- apa.ezANOVA.table(goggles_results, filename="ex1_ez_independent.doc") print(goggles_table) # # ** Example 2: Within Participant Predictors # library(apaTables) library(tidyr) library(forcats) library(ez) # See initial wide format where one row represents one PERSON print(drink_attitude_wide) # Convert data from wide format to long format where one row represents one OBSERVATION. # Wide format column names MUST represent levels of each variable separated by an underscore. # See vignette for further details. drink_attitude_long <- gather(data = drink_attitude_wide, key = cell, value = attitude, beer_positive:water_neutral, factor_key=TRUE) drink_attitude_long <- separate(data = drink_attitude_long, col = cell, into = c("drink","imagery"), sep = "_", remove = TRUE) drink_attitude_long$drink <- as_factor(drink_attitude_long$drink) drink_attitude_long$imagery <- as_factor(drink_attitude_long$imagery) # See new long format of data, where one row is one OBSERVATION. # As well, notice that we have two columns (drink, imagery) # drink, imagery, and participant are factors print(drink_attitude_long) # Set contrasts to match Field et al. (2012) textbook output alcohol_vs_water <- c(1, 1, -2) beer_vs_wine <- c(-1, 1, 0) negative_vs_other <- c(1, -2, 1) positive_vs_neutral <- c(-1, 0, 1) contrasts(drink_attitude_long$drink) <- cbind(alcohol_vs_water, beer_vs_wine) contrasts(drink_attitude_long$imagery) <- cbind(negative_vs_other, positive_vs_neutral) # Use ezANOVA # Be sure use the options command, as below, to ensure sufficient digits options(digits = 10) drink_attitude_results <- ezANOVA(data = drink_attitude_long, dv = .(attitude), wid = .(participant), within = .(drink, imagery), type = 3, detailed = TRUE) # Make APA table drink_table <- apa.ezANOVA.table(drink_attitude_results, filename="ex2_repeated_table.doc") print(drink_table) # # ** Example 3: Between and Within Participant Predictors # library(apaTables) library(tidyr) library(forcats) library(ez) # See initial wide format where one row represents one PERSON print(dating_wide) # Convert data from wide format to long format where one row represents one OBSERVATION. # Wide format column names MUST represent levels of each variable separated by an underscore. # See vignette for further details. dating_long <- gather(data = dating_wide, key = cell, value = date_rating, attractive_high:ugly_none, factor_key = TRUE) dating_long <- separate(data = dating_long, col = cell, into = c("looks","personality"), sep = "_", remove = TRUE) dating_long$looks <- as_factor(dating_long$looks) dating_long$personality <- as_factor(dating_long$personality) # See new long format of data, where one row is one OBSERVATION. # As well, notice that we have two columns (looks, personality) # looks, personality, and participant are factors print(dating_long) # Set contrasts to match Field et al. (2012) textbook output some_vs_none <- c(1, 1, -2) hi_vs_av <- c(1, -1, 0) attractive_vs_ugly <- c(1, 1, -2) attractive_vs_average <- c(1, -1, 0) contrasts(dating_long$personality) <- cbind(some_vs_none, hi_vs_av) contrasts(dating_long$looks) <- cbind(attractive_vs_ugly, attractive_vs_average) # Use ezANOVA library(ez) options(digits = 10) dating_results <-ezANOVA(data = dating_long, dv = .(date_rating), wid = .(participant), between = .(gender), within = .(looks, personality), type = 3, detailed = TRUE) # Make APA table dating_table <- apa.ezANOVA.table(dating_results, filename = "ex3_mixed_table.doc") print(dating_table) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.