Missing Data Grid
Generate a levelplot of missing data from a SoilProfileCollection object.
missingDataGrid( s, max_depth, vars, filter.column = NULL, filter.regex = NULL, cols = NULL, ... )
s |
a SoilProfileCollection object |
max_depth |
integer specifying the max depth of analysis |
vars |
character vector of column names over which to evaluate missing data |
filter.column |
a character string naming the column to apply the filter REGEX to |
filter.regex |
a character string with a regular expression used to filter horizon data OUT of the analysis |
cols |
a vector of colors |
... |
additional arguments passed on to |
This function evaluates a missing data fraction
based on slice-wise
evaulation of named variables in a SoilProfileCollection
object.
A data.frame
describing the percentage of missing data by
variable.
A lattice graphic is printed to the active output device.
D.E. Beaudette
# 10 random profiles set.seed(10101) s <- lapply(as.character(1:10), random_profile) s <- do.call('rbind', s) # randomly sprinkle some missing data s[sample(nrow(s), 5), 'p1'] <- NA s[sample(nrow(s), 5), 'p2'] <- NA s[sample(nrow(s), 5), 'p3'] <- NA # set all p4 and p5 attributes of `soil 1' to NA s[which(s$id == '1'), 'p5'] <- NA s[which(s$id == '1'), 'p4'] <- NA # upgrade to SPC depths(s) <- id ~ top + bottom # plot missing data via slicing + levelplot missingDataGrid( s, max_depth = 100, vars = c('p1', 'p2', 'p3', 'p4', 'p5'), main='Missing Data Fraction' )
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.