Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

comp_cdf_post

comp_cdf_post


Description

evaluate cdf of posterior distribution of beta at c. m is the prior on beta, a mixture; c is location of evaluation assumption is betahat | beta ~ t_v(beta,sebetahat)

Usage

comp_cdf_post(m, c, data)

Arguments

m

mixture distribution with k components

c

a scalar

data

details depend on model

Value

a k by n matrix

Examples

beta = rnorm(100,0,1)
betahat= beta+rnorm(100,0,1)
sebetahat=rep(1,100)
ash.beta = ash(betahat,1,mixcompdist="normal")
comp_cdf_post(get_fitted_g(ash.beta),0,data=set_data(beta,sebetahat))

ashr

Methods for Adaptive Shrinkage, using Empirical Bayes

v2.2-47
GPL (>= 3)
Authors
Matthew Stephens [aut], Peter Carbonetto [aut, cre], Chaoxing Dai [ctb], David Gerard [aut], Mengyin Lu [aut], Lei Sun [aut], Jason Willwerscheid [aut], Nan Xiao [aut], Mazon Zeng [ctb]
Initial release
2020-02-19

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.