Optimization via Generalized Simulated Annealing
OptimizerGenSA
class that implements generalized simulated annealing. Calls
GenSA::GenSA()
from package GenSA.
This Optimizer can be instantiated via the dictionary
mlr_optimizers or with the associated sugar function opt()
:
mlr_optimizers$get("gensa") opt("gensa")
smooth
logical(1)
temperature
numeric(1)
acceptance.param
numeric(1)
verbose
logical(1)
trace.mat
logical(1)
For the meaning of the control parameters, see GenSA::GenSA()
. Note that we
have removed all control parameters which refer to the termination of the
algorithm and where our terminators allow to obtain the same behavior.
$optimize()
supports progress bars via the package progressr
combined with a Terminator. Simply wrap the function in
progressr::with_progress()
to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress")
.
bbotk::Optimizer
-> OptimizerGenSA
new()
Creates a new instance of this R6 class.
OptimizerGenSA$new()
clone()
The objects of this class are cloneable with this method.
OptimizerGenSA$clone(deep = FALSE)
deep
Whether to make a deep clone.
Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics and its Applications, 233(1-2), 395–406. doi: 10.1016/s0378-4371(96)00271-3.
Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global Optimization: The GenSA Package.” The R Journal, 5(1), 13. doi: 10.32614/rj-2013-002.
if(requireNamespace("GenSA")) { library(paradox) domain = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1))) search_space = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1))) codomain = ParamSet$new(list(ParamDbl$new("y", tags = "minimize"))) objective_function = function(xs) { list(y = as.numeric(xs)^2) } objective = ObjectiveRFun$new(fun = objective_function, domain = domain, codomain = codomain) terminator = trm("evals", n_evals = 10) instance = OptimInstanceSingleCrit$new( objective = objective, search_space = search_space, terminator = terminator) optimizer = opt("cmaes") # Modifies the instance by reference optimizer$optimize(instance) # Returns best scoring evaluation instance$result # Allows access of data.table of full path of all evaluations as.data.table(instance$archive$data) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.