Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mlr_optimizers_gensa

Optimization via Generalized Simulated Annealing


Description

OptimizerGenSA class that implements generalized simulated annealing. Calls GenSA::GenSA() from package GenSA.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar function opt():

mlr_optimizers$get("gensa")
opt("gensa")

Parameters

smooth

logical(1)

temperature

numeric(1)

acceptance.param

numeric(1)

verbose

logical(1)

trace.mat

logical(1)

For the meaning of the control parameters, see GenSA::GenSA(). Note that we have removed all control parameters which refer to the termination of the algorithm and where our terminators allow to obtain the same behavior.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Simply wrap the function in progressr::with_progress() to enable them. We recommend to use package progress as backend; enable with progressr::handlers("progress").

Super class

bbotk::Optimizer -> OptimizerGenSA

Methods

Public methods


Method new()

Creates a new instance of this R6 class.

Usage
OptimizerGenSA$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
OptimizerGenSA$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Source

Tsallis C, Stariolo DA (1996). “Generalized simulated annealing.” Physica A: Statistical Mechanics and its Applications, 233(1-2), 395–406. doi: 10.1016/s0378-4371(96)00271-3.

Xiang Y, Gubian S, Suomela B, Hoeng J (2013). “Generalized Simulated Annealing for Global Optimization: The GenSA Package.” The R Journal, 5(1), 13. doi: 10.32614/rj-2013-002.

Examples

if(requireNamespace("GenSA")) {
library(paradox)

domain = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))

search_space = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))

codomain = ParamSet$new(list(ParamDbl$new("y", tags = "minimize")))

objective_function = function(xs) {
  list(y = as.numeric(xs)^2)
}

objective = ObjectiveRFun$new(fun = objective_function,
                              domain = domain,
                              codomain = codomain)
terminator = trm("evals", n_evals = 10)
instance = OptimInstanceSingleCrit$new(
 objective = objective,
 search_space = search_space,
 terminator = terminator)

optimizer = opt("cmaes")

# Modifies the instance by reference
optimizer$optimize(instance)

# Returns best scoring evaluation
instance$result

# Allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)
}

bbotk

Black-Box Optimization Toolkit

v0.3.2
LGPL-3
Authors
Marc Becker [cre, aut] (<https://orcid.org/0000-0002-8115-0400>), Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Martin Binder [aut], Olaf Mersmann [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.