Optimization via Non-linear Optimization
OptimizerNLoptr
class that implements non-linear optimization. Calls
nloptr::nloptr()
from package nloptr.
algorithm
character(1)
eval_g_ineq
function()
xtol_rel
numeric(1)
xtol_abs
numeric(1)
ftol_rel
numeric(1)
ftol_abs
numeric(1)
start_values
character(1)
Create random
start values or based on center
of search space? In the
latter case, it is the center of the parameters before a trafo is applied.
For the meaning of the control parameters, see nloptr::nloptr()
and
nloptr::nloptr.print.options()
.
The termination conditions stopval
, maxtime
and maxeval
of
nloptr::nloptr()
are deactivated and replaced by the Terminator
subclasses. The x and function value tolerance termination conditions
(xtol_rel = 10^-4
, xtol_abs = rep(0.0, length(x0))
, ftol_rel = 0.0
and
ftol_abs = 0.0
) are still available and implemented with their package
defaults. To deactivate these conditions, set them to -1
.
$optimize()
supports progress bars via the package progressr
combined with a Terminator. Simply wrap the function in
progressr::with_progress()
to enable them. We recommend to use package
progress as backend; enable with progressr::handlers("progress")
.
bbotk::Optimizer
-> OptimizerNLoptr
new()
Creates a new instance of this R6 class.
OptimizerNLoptr$new()
clone()
The objects of this class are cloneable with this method.
OptimizerNLoptr$clone(deep = FALSE)
deep
Whether to make a deep clone.
Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/nlopt.
if(requireNamespace("nloptr")) { library(paradox) domain = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1))) search_space = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1))) codomain = ParamSet$new(list(ParamDbl$new("y", tags = "minimize"))) objective_function = function(xs) { list(y = as.numeric(xs)^2) } objective = ObjectiveRFun$new(fun = objective_function, domain = domain, codomain = codomain) # We use the internal termination criterion xtol_rel terminator = trm("none") instance = OptimInstanceSingleCrit$new( objective = objective, search_space = search_space, terminator = terminator) optimizer = opt("nloptr", algorithm = "NLOPT_LN_BOBYQA") # Modifies the instance by reference optimizer$optimize(instance) # Returns best scoring evaluation instance$result # Allows access of data.table of full path of all evaluations as.data.table(instance$archive) }
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.