Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mlr_optimizers_nloptr

Optimization via Non-linear Optimization


Description

OptimizerNLoptr class that implements non-linear optimization. Calls nloptr::nloptr() from package nloptr.

Parameters

algorithm

character(1)

eval_g_ineq

function()

xtol_rel

numeric(1)

xtol_abs

numeric(1)

ftol_rel

numeric(1)

ftol_abs

numeric(1)

start_values

character(1)
Create random start values or based on center of search space? In the latter case, it is the center of the parameters before a trafo is applied.

For the meaning of the control parameters, see nloptr::nloptr() and nloptr::nloptr.print.options().

The termination conditions stopval, maxtime and maxeval of nloptr::nloptr() are deactivated and replaced by the Terminator subclasses. The x and function value tolerance termination conditions (xtol_rel = 10^-4, xtol_abs = rep(0.0, length(x0)), ftol_rel = 0.0 and ftol_abs = 0.0) are still available and implemented with their package defaults. To deactivate these conditions, set them to -1.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Simply wrap the function in progressr::with_progress() to enable them. We recommend to use package progress as backend; enable with progressr::handlers("progress").

Super class

bbotk::Optimizer -> OptimizerNLoptr

Methods

Public methods


Method new()

Creates a new instance of this R6 class.

Usage
OptimizerNLoptr$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
OptimizerNLoptr$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Source

Johnson, G S (2020). “The NLopt nonlinear-optimization package.” https://github.com/stevengj/nlopt.

Examples

if(requireNamespace("nloptr")) {
library(paradox)

domain = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))

search_space = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))

codomain = ParamSet$new(list(ParamDbl$new("y", tags = "minimize")))

objective_function = function(xs) {
  list(y = as.numeric(xs)^2)
}

objective = ObjectiveRFun$new(fun = objective_function,
  domain = domain,
  codomain = codomain)

# We use the internal termination criterion xtol_rel
terminator = trm("none")
instance = OptimInstanceSingleCrit$new(
 objective = objective,
 search_space = search_space,
 terminator = terminator)


optimizer = opt("nloptr", algorithm = "NLOPT_LN_BOBYQA")

# Modifies the instance by reference
optimizer$optimize(instance)

# Returns best scoring evaluation
instance$result

# Allows access of data.table of full path of all evaluations
as.data.table(instance$archive)
}

bbotk

Black-Box Optimization Toolkit

v0.3.2
LGPL-3
Authors
Marc Becker [cre, aut] (<https://orcid.org/0000-0002-8115-0400>), Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Martin Binder [aut], Olaf Mersmann [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.