Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mlr_optimizers_random_search

Optimization via Random Search


Description

OptimizerRandomSearch class that implements a simple Random Search.

In order to support general termination criteria and parallelization, we evaluate points in a batch-fashion of size batch_size. Larger batches mean we can parallelize more, smaller batches imply a more fine-grained checking of termination criteria.

Dictionary

This Optimizer can be instantiated via the dictionary mlr_optimizers or with the associated sugar function opt():

mlr_optimizers$get("random_search")
opt("random_search")

Parameters

batch_size

integer(1)
Maximum number of points to try in a batch.

Progress Bars

$optimize() supports progress bars via the package progressr combined with a Terminator. Simply wrap the function in progressr::with_progress() to enable them. We recommend to use package progress as backend; enable with progressr::handlers("progress").

Super class

bbotk::Optimizer -> OptimizerRandomSearch

Methods

Public methods


Method new()

Creates a new instance of this R6 class.

Usage
OptimizerRandomSearch$new()

Method clone()

The objects of this class are cloneable with this method.

Usage
OptimizerRandomSearch$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Source

Bergstra J, Bengio Y (2012). “Random Search for Hyper-Parameter Optimization.” Journal of Machine Learning Research, 13(10), 281–305. https://jmlr.csail.mit.edu/papers/v13/bergstra12a.html.

Examples

library(paradox)

domain = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))

search_space = ParamSet$new(list(ParamDbl$new("x", lower = -1, upper = 1)))

codomain = ParamSet$new(list(ParamDbl$new("y", tags = "minimize")))

objective_function = function(xs) {
  list(y = as.numeric(xs)^2)
}

objective = ObjectiveRFun$new(fun = objective_function,
                              domain = domain,
                              codomain = codomain)
terminator = trm("evals", n_evals = 10)
instance = OptimInstanceSingleCrit$new(
 objective = objective,
 search_space = search_space,
 terminator = terminator)


optimizer = opt("random_search")

# Modifies the instance by reference
optimizer$optimize(instance)

# Returns best scoring evaluation
instance$result

# Allows access of data.table of full path of all evaluations
as.data.table(instance$archive$data)

bbotk

Black-Box Optimization Toolkit

v0.3.2
LGPL-3
Authors
Marc Becker [cre, aut] (<https://orcid.org/0000-0002-8115-0400>), Jakob Richter [aut] (<https://orcid.org/0000-0003-4481-5554>), Michel Lang [aut] (<https://orcid.org/0000-0001-9754-0393>), Bernd Bischl [aut] (<https://orcid.org/0000-0001-6002-6980>), Martin Binder [aut], Olaf Mersmann [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.