Poll a jobId
Poll a jobId
bqr_get_job(jobId = .Last.value, projectId = bqr_get_global_project())
jobId |
jobId to poll, or a job Object |
projectId |
projectId of job |
A Jobs resource
Other BigQuery asynch query functions: bqr_download_extract
,
bqr_extract_data
,
bqr_grant_extract_access
,
bqr_query_asynch
,
bqr_wait_for_job
## Not run: library(bigQueryR) ## Auth with a project that has at least BigQuery and Google Cloud Storage scope bqr_auth() ## make a big query job <- bqr_query_asynch("your_project", "your_dataset", "SELECT * FROM blah LIMIT 9999999", destinationTableId = "bigResultTable") ## poll the job to check its status ## its done when job$status$state == "DONE" bqr_get_job("your_project", job$jobReference$jobId) ##once done, the query results are in "bigResultTable" ## extract that table to GoogleCloudStorage: # Create a bucket at Google Cloud Storage at # https://console.cloud.google.com/storage/browser job_extract <- bqr_extract_data("your_project", "your_dataset", "bigResultTable", "your_cloud_storage_bucket_name") ## poll the extract job to check its status ## its done when job$status$state == "DONE" bqr_get_job("your_project", job_extract$jobReference$jobId) ## to download via a URL and not logging in via Google Cloud Storage interface: ## Use an email that is Google account enabled ## Requires scopes: ## https://www.googleapis.com/auth/devstorage.full_control ## https://www.googleapis.com/auth/cloud-platform ## set via options("bigQueryR.scopes") and reauthenticate if needed download_url <- bqr_grant_extract_access(job_extract, "your@email.com") ## download_url may be multiple if the data is > 1GB ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.