Isothermal growth with variability
Stochastic simulation of microbial growth based on probability distributions of the parameters of the primary model. It is included by Monte Carlo simulation considering the parameters follow a multivariate normal distribution.
predict_stochastic_growth( model_name, times, n_sims, pars, corr_matrix = diag(nrow(pars)), check = TRUE )
model_name |
Character describing the primary growth model. |
times |
Numeric vector of storage times for the simulations. |
n_sims |
Number of simulations. |
pars |
A tibble describing the parameter uncertainty (see details). |
corr_matrix |
Correlation matrix of the model parameters. Defined in the
same order as in |
check |
Whether to do some tests. |
They are defined in the pars
argument using a tibble with 4 columns:
par: identifier of the model parameter (according to primary_model_data
),
mean: mean value of the model parameter.,
sd: standard deviation of the model parameter.,
scale: scale at which the model parameter is defined. Valid values are 'original' (no transformation), 'sqrt' square root or 'log' log-scale. The parameter sample is generated considering the parameter follows a marginal normal distribution at this scale, and is later converted to the original scale for calculations.
An instance of StochasticGrowth
.
## Definition of the simulation settings my_model <- "Baranyi" my_times <- seq(0, 30, length = 100) n_sims <- 3000 pars <- tribble( ~par, ~mean, ~sd, ~scale, "logN0", 0, .2, "original", "mu", 2, .3, "sqrt", "lambda", 4, .4, "sqrt", "logNmax", 6, .5, "original" ) ## Calling the function stoc_growth <- predict_stochastic_growth(my_model, my_times, n_sims, pars) ## We can plot the results plot(stoc_growth) ## Adding parameter correlation my_cor <- matrix(c(1, 0, 0, 0, 0, 1, 0.7, 0, 0, 0.7, 1, 0, 0, 0, 0, 1), nrow = 4) stoc_growth2 <- predict_stochastic_growth(my_model, my_times, n_sims, pars, my_cor) plot(stoc_growth2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.