Inspect or Extract Information from a fitted blavaan object
The blavInspect() and blavTech() functions can be used to
inspect/extract information that is stored inside (or can be computed from) a
fitted blavaan object. This is similar to lavaan's lavInspect() function.
blavInspect(blavobject, what, ...) blavTech(blavobject, what, ...)
blavobject |
An object of class blavaan. |
what |
Character. What needs to be inspected/extracted? See Details for Bayes-specific options, and see |
... |
Default lavaan arguments supplied to |
Below is a list of Bayesian-specific values for the what
argument; additional values can be found in the lavInspect()
documentation.
"start":A list of starting values for each chain, unless inits="jags" is used during model estimation. Aliases: "starting.values", "inits".
"psrf":Each parameter's Gelman-Rubin PSRF (potential scale reduction factor) for convergence assessment.
"ac.10":Each parameter's estimated lag-10 autocorrelation.
"neff":Each parameters effective sample size, taking into account autocorrelation.
"mcmc":An object of class mcmc containing the individual parameter draws from the MCMC run. Aliases: "draws", "samples".
"mcobj":The underlying run.jags or stan object that resulted from the MCMC run.
"n.chains":The number of chains sampled.
"cp":The approach used for estimating covariance parameters ("srs" or "fa").
"dp":Default prior distributions used for each type of model parameter.
"postmode":Estimated posterior mode of each free parameter.
"postmean":Estimated posterior mean of each free parameter.
"postmedian":Estimated posterior median of each free parameter.
"lvs":An object of class mcmc containing latent
variable (factor score) draws.
"lvmeans":A matrix of mean factor scores (rows are observations, columns are variables).
"hpd":HPD interval of each free parameter. In this case, an additional argument level can be supplied to specify a number in (0,1) reflecting the percentage of the interval.
## Not run:
# The Holzinger and Swineford (1939) example
HS.model <- ' visual =~ x1 + x2 + x3
textual =~ x4 + x5 + x6
speed =~ x7 + x8 + x9 '
fit <- bcfa(HS.model, data=HolzingerSwineford1939,
jagcontrol=list(method="rjparallel"))
# extract information
blavInspect(fit, "psrf")
blavInspect(fit, "hpd", level=.9)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.