WoE & IV
Weight of evidence and information value. Currently avialable for categorical predictors only.
blr_woe_iv(data, predictor, response, digits = 4, ...) ## S3 method for class 'blr_woe_iv' plot( x, title = NA, xaxis_title = "Levels", yaxis_title = "WoE", bar_color = "blue", line_color = "red", print_plot = TRUE, ... )
data |
A |
predictor |
Predictor variable; column in |
response |
Response variable; column in |
digits |
Number of decimal digits to round off. |
... |
Other inputs. |
x |
An object of class |
title |
Plot title. |
xaxis_title |
X axis title. |
yaxis_title |
Y axis title. |
bar_color |
Color of the bar. |
line_color |
Color of the horizontal line. |
print_plot |
logical; if |
A tibble.
Siddiqi N (2006): Credit Risk Scorecards: developing and implementing intelligent credit scoring. New Jersey, Wiley.
Other bivariate analysis procedures:
blr_bivariate_analysis()
,
blr_segment_dist()
,
blr_segment_twoway()
,
blr_segment()
,
blr_woe_iv_stats()
# woe and iv k <- blr_woe_iv(hsb2, female, honcomp) k # plot woe plot(k)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.