Estimate the optimal imaginary sample size for BDe(u)
Estimate the optimal value of the imaginary sample size for the BDe score, assuming a uniform prior and given a network structure and a data set.
alpha.star(x, data, debug = FALSE)
x |
an object of class |
data |
a data frame containing the variables in the model. |
debug |
a boolean value. If |
alpha.star()
returns a positive number, the estimated optimal imaginary
sample size value.
Marco Scutari
Steck H (2008). "Learning the Bayesian Network Structure: Dirichlet Prior versus Data". Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence, 511–518.
data(learning.test) dag = hc(learning.test, score = "bic") for (i in 1:3) { a = alpha.star(dag, learning.test) dag = hc(learning.test, score = "bde", iss = a) }#FOR
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.