Tidy a(n) coxph object
Tidy summarizes information about the components of a model. A model component might be a single term in a regression, a single hypothesis, a cluster, or a class. Exactly what tidy considers to be a model component varies across models but is usually self-evident. If a model has several distinct types of components, you will need to specify which components to return.
## S3 method for class 'coxph' tidy(x, exponentiate = FALSE, conf.int = FALSE, conf.level = 0.95, ...)
x | 
 A   | 
exponentiate | 
 Logical indicating whether or not to exponentiate the
the coefficient estimates. This is typical for logistic and multinomial
regressions, but a bad idea if there is no log or logit link. Defaults
to   | 
conf.int | 
 Logical indicating whether or not to include a confidence
interval in the tidied output. Defaults to   | 
conf.level | 
 The confidence level to use for the confidence interval
if   | 
... | 
 Additional arguments. Not used. Needed to match generic
signature only. Cautionary note: Misspelled arguments will be
absorbed in   | 
A tibble::tibble() with columns:
estimate | 
 The estimated value of the regression term.  | 
p.value | 
 The two-sided p-value associated with the observed statistic.  | 
statistic | 
 The value of a T-statistic to use in a hypothesis that the regression term is non-zero.  | 
std.error | 
 The standard error of the regression term.  | 
Other coxph tidiers: 
augment.coxph(),
glance.coxph()
Other survival tidiers: 
augment.coxph(),
augment.survreg(),
glance.aareg(),
glance.cch(),
glance.coxph(),
glance.pyears(),
glance.survdiff(),
glance.survexp(),
glance.survfit(),
glance.survreg(),
tidy.aareg(),
tidy.cch(),
tidy.pyears(),
tidy.survdiff(),
tidy.survexp(),
tidy.survfit(),
tidy.survreg()
if (requireNamespace("survival", quietly = TRUE)) {
library(survival)
cfit <- coxph(Surv(time, status) ~ age + sex, lung)
tidy(cfit)
tidy(cfit, exponentiate = TRUE)
lp <- augment(cfit, lung)
risks <- augment(cfit, lung, type.predict = "risk")
expected <- augment(cfit, lung, type.predict = "expected")
glance(cfit)
# also works on clogit models
resp <- levels(logan$occupation)
n <- nrow(logan)
indx <- rep(1:n, length(resp))
logan2 <- data.frame(
  logan[indx, ],
  id = indx,
  tocc = factor(rep(resp, each = n))
)
logan2$case <- (logan2$occupation == logan2$tocc)
cl <- clogit(case ~ tocc + tocc:education + strata(id), logan2)
tidy(cl)
glance(cl)
library(ggplot2)
ggplot(lp, aes(age, .fitted, color = sex)) +
  geom_point()
ggplot(risks, aes(age, .fitted, color = sex)) +
  geom_point()
ggplot(expected, aes(time, .fitted, color = sex)) +
  geom_point()
  
}Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.