Simulation Smoothing
Function sim_smoother
performs simulation smoothing i.e. simulates the states
from the conditional distribution p(α | y, θ) for linear-Gaussian models.
sim_smoother(model, nsim, seed, use_antithetic = FALSE, ...) ## S3 method for class 'gaussian' sim_smoother( model, nsim = 1, seed = sample(.Machine$integer.max, size = 1), use_antithetic = FALSE, ... ) ## S3 method for class 'nongaussian' sim_smoother( model, nsim = 1, seed = sample(.Machine$integer.max, size = 1), use_antithetic = FALSE, ... )
model |
Model object. |
nsim |
Number of independent samples. |
seed |
Seed for the random number generator. |
use_antithetic |
Use an antithetic variable for location.
Default is |
... |
Ignored. |
For non-Gaussian/non-linear models, the simulation is based on the approximating Gaussian model.
An array containing the generated samples.
model <- bsm_lg(rep(NA, 50), sd_level = uniform(1,0,5), sd_y = uniform(1,0,5)) sim <- sim_smoother(model, 12) ts.plot(sim[, 1, ])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.