Transform a VEC Model to a VAR in Levels
An object of class "bvec"
is transformed to a VAR in level representation.
bvec_to_bvar(object)
object |
an object of class |
An object of class "bvar"
.
# Load data data("e6") # Generate model data <- gen_vec(e6, p = 4, r = 1, const = "unrestricted", season = "unrestricted") # Obtain data matrices y <- t(data$data$Y) w <- t(data$data$W) x <- t(data$data$X) # Reset random number generator for reproducibility set.seed(1234567) iterations <- 400 # Number of iterations of the Gibbs sampler # Chosen number of iterations should be much higher, e.g. 30000. burnin <- 100 # Number of burn-in draws draws <- iterations + burnin r <- 1 # Set rank tt <- ncol(y) # Number of observations k <- nrow(y) # Number of endogenous variables k_w <- nrow(w) # Number of regressors in error correction term k_x <- nrow(x) # Number of differenced regressors and unrestrictec deterministic terms k_alpha <- k * r # Number of elements in alpha k_beta <- k_w * r # Number of elements in beta k_gamma <- k * k_x # Set uninformative priors a_mu_prior <- matrix(0, k_x * k) # Vector of prior parameter means a_v_i_prior <- diag(0, k_x * k) # Inverse of the prior covariance matrix v_i <- 0 p_tau_i <- diag(1, k_w) u_sigma_df_prior <- r # Prior degrees of freedom u_sigma_scale_prior <- diag(0, k) # Prior covariance matrix u_sigma_df_post <- tt + u_sigma_df_prior # Posterior degrees of freedom # Initial values beta <- matrix(c(1, -4), k_w, r) u_sigma_i <- diag(1 / .0001, k) g_i <- u_sigma_i # Data containers draws_alpha <- matrix(NA, k_alpha, iterations) draws_beta <- matrix(NA, k_beta, iterations) draws_pi <- matrix(NA, k * k_w, iterations) draws_gamma <- matrix(NA, k_gamma, iterations) draws_sigma <- matrix(NA, k^2, iterations) # Start Gibbs sampler for (draw in 1:draws) { # Draw conditional mean parameters temp <- post_coint_kls(y = y, beta = beta, w = w, x = x, sigma_i = u_sigma_i, v_i = v_i, p_tau_i = p_tau_i, g_i = g_i, gamma_mu_prior = a_mu_prior, gamma_v_i_prior = a_v_i_prior) alpha <- temp$alpha beta <- temp$beta Pi <- temp$Pi gamma <- temp$Gamma # Draw variance-covariance matrix u <- y - Pi %*% w - matrix(gamma, k) %*% x u_sigma_scale_post <- solve(tcrossprod(u) + v_i * alpha %*% tcrossprod(crossprod(beta, p_tau_i) %*% beta, alpha)) u_sigma_i <- matrix(rWishart(1, u_sigma_df_post, u_sigma_scale_post)[,, 1], k) u_sigma <- solve(u_sigma_i) # Update g_i g_i <- u_sigma_i # Store draws if (draw > burnin) { draws_alpha[, draw - burnin] <- alpha draws_beta[, draw - burnin] <- beta draws_pi[, draw - burnin] <- Pi draws_gamma[, draw - burnin] <- gamma draws_sigma[, draw - burnin] <- u_sigma } } # Number of non-deterministic coefficients k_nondet <- (k_x - 4) * k # Generate bvec object bvec_est <- bvec(y = data$data$Y, w = data$data$W, x = data$data$X[, 1:6], x_d = data$data$X[, 7:10], Pi = draws_pi, Gamma = draws_gamma[1:k_nondet,], C = draws_gamma[(k_nondet + 1):nrow(draws_gamma),], Sigma = draws_sigma) # Thin posterior draws bvec_est <- thin_posterior(bvec_est, thin = 5) # Transfrom VEC output to VAR output bvar_form <- bvec_to_bvar(bvec_est)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.