Calculates the log-likelihood of a multivariate normal distribution.
Calculates the log-likelihood of a multivariate normal distribution.
loglik_normal(u, sigma)
u |
a K \times T matrix of residuals. |
sigma |
a K \times K or KT \times K variance-covariance matrix. |
The log-likelihood is calculated for each vector in period t as
-\frac{K}{2} \ln 2π - \frac{1}{2} \ln |Σ_t| -\frac{1}{2} u_t^\prime Σ_t^{-1} u_t
, where u_t = y_t - μ_t.
# Load data data("e1") e1 <- diff(log(e1)) # Generate VAR model data <- gen_var(e1, p = 2, deterministic = "const") y <- t(data$data$Y) x <- t(data$data$Z) # LS estimate ols <- tcrossprod(y, x) %*% solve(tcrossprod(x)) # Residuals u <- y - ols %*% x # Residuals # Covariance matrix sigma <- tcrossprod(u) / ncol(u) # Log-likelihood loglik_normal(u = u, sigma = sigma)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.