Do a nonlinear effects analysis
doNonlinearEffectsAnalysis( .object = NULL, .dependent = NULL, .independent = NULL, .moderator = NULL, .n_steps = 100, .values_moderator = c(-2, -1, 0, 1, 2), .value_independent = 0, .alpha = 0.05 )
.object |
An R object of class cSEMResults resulting from a call to |
.dependent |
Character string. The name of the dependent variable. |
.independent |
Character string. The name of the independent variable. |
.moderator |
Character string. The name of the moderator variable. |
.n_steps |
Integer. A value giving the number of steps (the spotlights, i.e.,
values of .moderator in surface analysis or floodlight analysis)
between the minimum and maximum value of the moderator. Defaults to |
.values_moderator |
A numeric vector. The values of the moderator in a
the simple effects analysis. Typically these are difference from the mean (=0)
measured in standard deviations. Defaults to |
.value_independent |
Integer. Only required for floodlight analysis; The value of the independent variable in case that it appears as a higher-order term. |
.alpha |
An integer or a numeric vector of significance levels.
Defaults to |
Calculate the expected value of the dependent variable conditional on the values of an independent variables and a moderator variable. All other variables in the model are assumed to be zero, i.e., they are fixed at their mean levels. Moreover, it produces the input for the floodlight analysis.
A list of class cSEMNonlinearEffects with a corresponding method
for plot(). See: plot.cSEMNonlinearEffects().
## Not run:
model_Int <- "
# Measurement models
INV =~ INV1 + INV2 + INV3 +INV4
SAT =~ SAT1 + SAT2 + SAT3
INT =~ INT1 + INT2
# Structrual model containing an interaction term.
INT ~ INV + SAT + INV.SAT
"
# Estimate model
out <- csem(.data = Switching, .model = model_Int,
# ADANCO settings
.PLS_weight_scheme_inner = 'factorial',
.tolerance = 1e-06,
.resample_method = 'bootstrap'
)
# Do nonlinear effects analysis
neffects <- doNonlinearEffectsAnalysis(out,
.dependent = 'INT',
.moderator = 'INV',
.independent = 'SAT')
# Get an overview
neffects
# Simple effects plot
plot(neffects, .plot_type = 'simpleeffects')
# Surface plot using plotly
plot(neffects, .plot_type = 'surface', .plot_package = 'plotly')
# Surface plot using persp
plot(neffects, .plot_type = 'surface', .plot_package = 'persp')
# Floodlight analysis
plot(neffects, .plot_type = 'floodlight')
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.