Component plot for repeated DCV of PRM
Generate plot showing optimal number of components for Repeated Double Cross-Validation of Partial Robust M-regression
plotcompprm(prmdcvobj, ...)
prmdcvobj |
object from repeated double-CV of PRM, see |
... |
additional plot arguments |
After running repeated double-CV for PRM, this plot helps to decide on the final number of components.
optcomp |
optimal number of components |
compdistrib |
frequencies for the optimal number of components |
Peter Filzmoser <P.Filzmoser@tuwien.ac.at>
K. Varmuza and P. Filzmoser: Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, Boca Raton, FL, 2009.
data(NIR) X <- NIR$xNIR[1:30,] # first 30 observations - for illustration y <- NIR$yGlcEtOH[1:30,1] # only variable Glucose NIR.Glc <- data.frame(X=X, y=y) res <- prm_dcv(X,y,a=4,repl=2) plot2 <- plotcompprm(res)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.