Intersection between model region and a given interval.
Find an estimates of the probability of the intersection between a modal region and a given interval.
intersect.modal.region(x, ...) ## Default S3 method: intersect.modal.region(x, ...) ## S3 method for class 'circular' intersect.modal.region(x, breaks, z = NULL, q = 0.95, bw, adjust = 1, type = c("K", "L"), kernel = c("vonmises", "wrappednormal"), na.rm = FALSE, step = 0.01, eps.lower = 10^(-4), eps.upper = 10^(-4), ...)
x |
numeric or an object of class |
breaks |
a matrix with two columns. Each row specifies a sub-interval. |
z |
numeric or object of class |
q |
numeric in the interval [0,1]. The quantile of the modal region. |
bw |
the smoothing bandwidth to be used. When the |
adjust |
the bandwidth used is actually |
type |
Not Yet Used. |
kernel |
a character string giving the smoothing kernel to be
used. This must be one of |
na.rm |
logical; if |
step |
numeric. Used in the construction of the regular grid |
eps.lower,eps.upper |
the cut point in the density is searched in the interval [min(density)*(1+eps.lower),max(density)*(1-eps.upper)]. |
... |
further arguments passed to the next methods. |
Only the version for circular data is actually implemented.
For the circular method a list with the following three components
tot |
the total area. |
areas |
information for each subinterval. |
breaks |
the extremes of each subinterval. |
Claudio Agostinelli
x <- rvonmises(100, circular(pi), 10) res <- intersect.modal.region(x, breaks=circular(matrix(c(pi,pi+pi/12, pi-pi/12, pi), ncol=2, byrow=TRUE)), bw=50) res$tot x <- rvonmises(100, circular(0), 10) res <- intersect.modal.region(x, breaks=circular(matrix(c(pi,pi+pi/12), ncol=2)), bw=50) res$tot res <- intersect.modal.region(x, breaks=circular(matrix(c(pi/12, 2*pi-pi/12), ncol=2, byrow=TRUE)), bw=50) res$tot
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.