Bayesian fit of hyperbolic or sigmoidal Emax models to continuous/binary dose response data.
Uses Rpackage rstan
to fit a Bayesian hyperbolic or sigmoidal
Emax model. Different intercepts for multiple protocol-data are supported. For binary
data, the Emax model is on the logit scale.
fitEmaxB(y, dose, prior, modType = 4, prot = rep(1, length(y)), count = rep(1, length(y)), xbase=NULL, binary = FALSE, msSat = NULL, pboAdj = FALSE, mcmc = mcmc.control(), estan = NULL, diagnostics = FALSE, nproc = getOption("mc.cores", 1L))
y |
Outcome for each patient. Missing |
dose |
Dose for each patient. |
prior |
Prior specification through an object of type 'emaxPrior' or 'prior'.
See |
modType |
modType=3 (default) for the 3-parameter hyperbolic Emax model. modType=4 for the 4-parameter sigmoidal Emax model. |
prot |
Protocol (group) membership used to create multiple intercepts. The default is a single protocol. The prior disribution for the placebo response is re-used independently for each intercept. |
count |
Counts for the number of patients when the |
xbase |
A matrix of baseline covariates with rows corresponding to
|
binary |
When |
msSat |
If continuous |
pboAdj |
For published data with only pbo-adjusted dose group means and
SEs, the model is fit without an intercept(s). If initial parameters
are supplied, the intercept (E0) should be assigned |
mcmc |
Inputs controlling |
estan |
The compiled |
diagnostics |
Printed output from rstan. See |
nproc |
The number of processor requested for |
The function compileStanModels
must be executed once to create compiled STAN
code before fitEmaxB
can be used.
MCMC fit of a Bayesian hyperbolic or sigmoidal Emax model. The prior distributions available are based on the publication Thomas, Sweeney, and Somayaji (2014) and Thomas and Roy (2016).
The posterior distributions are complex because the distributions of the Emax
and ED50
parameters
change substantially as a function of the lambda
, often
creating 'funnel' type conditions. Small numbers of
divergences are common and do not appear easily avoided.
Extensive simulation using evaluations with emaxsimB
support the utility of the resulting approximate
posterior distributions. The number of divergences can be
viewed using diagnostics=TRUE
. The usual convergence
diagnostics should always be checked.
A list assigned class "fitEmaxB" with:
estanfit |
The |
y, dose, prot, count,
modType, binary, pboAdj, nbase,
msSat, prior, mcmc |
Input values. |
The default modType was changed from 3 to 4 for clinDR version >2.0
Neal Thomas
Thomas, N., Sweeney, K., and Somayaji, V. (2014). Meta-analysis of clinical dose response in a large drug development portfolio, Statistics in Biopharmaceutical Research, Vol. 6, No.4, 302-317. <doi:10.1080/19466315.2014.924876>
Thomas, N., and Roy, D. (2016). Analysis of clinical dose-response in small-molecule drug development: 2009-2014. Statistics in Biopharmaceutical Research, Vol. 6, No.4, 302-317 <doi:10.1080/19466315.2016.1256229>
## Not run: data("metaData") exdat<-metaData[metaData$taid==1,] prior<-emaxPrior.control(epmu=0,epsca=4,difTargetmu=0,difTargetsca=4,dTarget=20, p50=(2+5)/2, sigmalow=0.01,sigmaup=3) mcmc<-mcmc.control(chains=3) msSat<-sum((exdat$sampsize-1)*(exdat$sd)^2)/(sum(exdat$sampsize)-length(exdat$sampsize)) fitout<-fitEmaxB(exdat$rslt,exdat$dose,prior,modType=4,prot=exdat$protid, count=exdat$sampsize,msSat=msSat,mcmc=mcmc) plot(fitout) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.