Mean response and SE for specified doses for each replicate data set in an emaxsim object
Estimated mean/proportion and standard error for each simulated data set in an emaxsim object. Also returns mean difference with placebo and their standard errors.
## S3 method for class 'emaxsim' predict(object, dose, dref=0, ...)
object |
Output of |
dose |
Vector (can be a single value) of doses where dose response curve is to be evaluated. |
dref |
A reference dose (0 by default) for contrasts, but other values can be specified. If specified, a single reference value must be given. |
... |
Optional arguments are not used. |
A list containing:
fitpredv |
Matrix with mean dose response estimate for each simulated data set. Number of columns is the number of doses specified. |
fitdifv |
Matrix with mean dose response estimate minus mean placebo response for each simulated data set. Number of columns is the number of doses specified. |
sepredv |
Matrix of SEs for |
sedifv |
Matrix of SEs for |
Neal Thomas
## Not run: ## random number seed changed by this example nsim<-50 idmax<-5 doselev<-c(0,5,25,50,100) n<-c(78,81,81,81,77) ### population parameters for simulation e0<-2.465375 ed50<-67.481113 dtarget<-100 diftarget<-9.032497 emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0) sdy<-7.967897 pop.parm<-c(log(ed50),emax,e0) meanlev<-emaxfun(doselev,pop.parm) ###FixedMean is specialized constructor function for emaxsim gen.parm<-FixedMean(n,doselev,meanlev,sdy) D1 <- emaxsim(nsim,gen.parm) predout<-predict(D1,c(75,150)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.