Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

summary.emaxsimB

Summary of output of emaxsimB


Description

Detailed summary of repeated sampling properties of Bayesian Emax estimation and comparison with simple pairwise comparisons.

Usage

## S3 method for class 'emaxsimB'
summary(object, testalpha = 0.05, 
	clev = c('0.9','0.95','0.8'),
	seSim = FALSE, ...)

Arguments

object

Output of emaxsimB

testalpha

Alpha level for a one-sided MCP-MOD trend test.

clev

Posterior proabilities for reported intervals

seSim

If TRUE, then simulation standard errors are reported in parentheses. These should be distinguished from posterior SD in the simulations.

...

Other unspecified parameters (none currently utilized)

Details

For pairwise comparisons, the 'most favorable pairwise comparison' means the dose with the best difference versus placebo is compared to the population mean response for the selected dose, thus the target value for coverage, bias, and RMSE changes depending on the selected dose.

Value

The function produces annotated output summarizing the properties of the estimation procedures. The summaries are also returned as an invisible list for extracting results.

Author(s)

Neal Thomas

See Also

Examples

## Not run: 

## emaxsimB changes the random number seed
nsim<-50
idmax<-5
doselev<-c(0,5,25,50,100)
n<-c(78,81,81,81,77)
Ndose<-length(doselev)

### population parameters for simulation
e0<-2.465375 
ed50<-67.481113 

dtarget<-100
diftarget<-2.464592
emax<-solveEmax(diftarget,dtarget,log(ed50),1,e0)

sdy<-7.967897
pop<-c(log(ed50),emax,e0)    
meanlev<-emaxfun(doselev,pop)  

###FixedMean is specialized constructor function for emaxsim
gen<-FixedMean(n,doselev,meanlev,sdy)  

prior<-emaxPrior.control(epmu=0,epsca=30,difTargetmu=0,
		difTargetsca=30,dTarget=100,p50=50,sigmalow=0.1,
		sigmaup=30,parmDF=5)
mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = 0.95)

D1 <- emaxsimB(nsim,gen, prior, modType=3,mcmc=mcmc,check=FALSE)


summary(D1,testalph=0.05,clev='0.95')

## End(Not run)

clinDR

Simulation and Analysis Tools for Clinical Dose Response Modeling

v2.3.5
GPL (>= 2)
Authors
Neal Thomas [aut, cre] (<https://orcid.org/0000-0002-1915-8487>), Jing Wu [aut], Mike K. Smith [aut]
Initial release
2021-04-11

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.