Groningen Growth and Development Centre 10-Sector Database
The GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are annual series of value added (in local currency), and persons employed for 10 broad sectors.
data("GGDC10S")
A data frame with 5027 observations on the following 16 variables.
Country
char: Country (43 countries)
Regioncode
char: ISO3 Region code
Region
char: Region (6 World Regions)
Variable
char: Variable (Value Added or Employment)
Year
num: Year (67 Years, 1947-2013)
AGR
num: Agriculture
MIN
num: Mining
MAN
num: Manufacturing
PU
num: Utilities
CON
num: Construction
WRT
num: Trade, restaurants and hotels
TRA
num: Transport, storage and communication
FIRE
num: Finance, insurance, real estate and business services
GOV
num: Government services
OTH
num: Community, social and personal services
SUM
num: Summation of sector GDP
Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.
namlab(GGDC10S, class = TRUE) # aperm(qsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE)) library(data.table) library(ggplot2) ## World Regions Structural Change Plot dat <- GGDC10S fselect(dat, AGR:OTH) <- replace_outliers(dapply(fselect(dat, AGR:OTH), `*`, 1 / dat$SUM), 0, NA, "min") dat$Variable <- recode_char(dat$Variable, VA = "Value Added Share", EMP = "Employment Share") dat <- collap(dat, ~ Variable + Region + Year, cols = 6:15) dat <- melt(qDT(dat), 1:3, variable.name = "Sector", na.rm = TRUE) ggplot(aes(x = Year, y = value, fill = Sector), data = dat) + geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) + theme_linedraw(base_size = 14) + facet_grid(Variable ~ Region, scales = "free_x") + scale_fill_manual(values = sub("#00FF66FF", "#00CC66", rainbow(10))) + scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+ scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0), labels = scales::percent) + theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)), strip.background = element_rect(colour = "grey30", fill = "grey30")) # A function to plot the structural change of an arbitrary country plotGGDC <- function(ctry) { dat <- fsubset(GGDC10S, Country == ctry, Variable, Year, AGR:SUM) fselect(dat, AGR:OTH) <- replace_outliers(dapply(fselect(dat, AGR:OTH), `*`, 1 / dat$SUM), 0, NA, "min") dat$SUM <- NULL dat$Variable <- recode_char(dat$Variable, VA = "Value Added Share", EMP = "Employment Share") dat <- melt(qDT(dat), 1:2, variable.name = "Sector", na.rm = TRUE) ggplot(aes(x = Year, y = value, fill = Sector), data = dat) + geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) + theme_linedraw(base_size = 14) + facet_wrap( ~ Variable) + scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) + scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) + scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0), labels = scales::percent) + theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)), strip.background = element_rect(colour = "grey20", fill = "grey20"), strip.text = element_text(face = "bold")) } plotGGDC("BWA")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.