Groningen Growth and Development Centre 10-Sector Database
The GGDC 10-Sector Database provides a long-run internationally comparable dataset on sectoral productivity performance in Africa, Asia, and Latin America. Variables covered in the data set are annual series of value added (in local currency), and persons employed for 10 broad sectors.
data("GGDC10S")A data frame with 5027 observations on the following 16 variables.
Countrychar: Country (43 countries)
Regioncodechar: ISO3 Region code
Regionchar: Region (6 World Regions)
Variablechar: Variable (Value Added or Employment)
Yearnum: Year (67 Years, 1947-2013)
AGRnum: Agriculture
MINnum: Mining
MANnum: Manufacturing
PUnum: Utilities
CONnum: Construction
WRTnum: Trade, restaurants and hotels
TRAnum: Transport, storage and communication
FIREnum: Finance, insurance, real estate and business services
GOVnum: Government services
OTHnum: Community, social and personal services
SUMnum: Summation of sector GDP
Timmer, M. P., de Vries, G. J., & de Vries, K. (2015). "Patterns of Structural Change in Developing Countries." . In J. Weiss, & M. Tribe (Eds.), Routledge Handbook of Industry and Development. (pp. 65-83). Routledge.
namlab(GGDC10S, class = TRUE)
# aperm(qsu(GGDC10S, ~ Variable, ~ Variable + Country, vlabels = TRUE))
library(data.table)
library(ggplot2)
## World Regions Structural Change Plot
dat <- GGDC10S
fselect(dat, AGR:OTH) <- replace_outliers(dapply(fselect(dat, AGR:OTH), `*`, 1 / dat$SUM),
0, NA, "min")
dat$Variable <- recode_char(dat$Variable, VA = "Value Added Share", EMP = "Employment Share")
dat <- collap(dat, ~ Variable + Region + Year, cols = 6:15)
dat <- melt(qDT(dat), 1:3, variable.name = "Sector", na.rm = TRUE)
ggplot(aes(x = Year, y = value, fill = Sector), data = dat) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_grid(Variable ~ Region, scales = "free_x") +
scale_fill_manual(values = sub("#00FF66FF", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0))+
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey30", fill = "grey30"))
# A function to plot the structural change of an arbitrary country
plotGGDC <- function(ctry) {
dat <- fsubset(GGDC10S, Country == ctry, Variable, Year, AGR:SUM)
fselect(dat, AGR:OTH) <- replace_outliers(dapply(fselect(dat, AGR:OTH), `*`, 1 / dat$SUM),
0, NA, "min")
dat$SUM <- NULL
dat$Variable <- recode_char(dat$Variable, VA = "Value Added Share", EMP = "Employment Share")
dat <- melt(qDT(dat), 1:2, variable.name = "Sector", na.rm = TRUE)
ggplot(aes(x = Year, y = value, fill = Sector), data = dat) +
geom_area(position = "fill", alpha = 0.9) + labs(x = NULL, y = NULL) +
theme_linedraw(base_size = 14) + facet_wrap( ~ Variable) +
scale_fill_manual(values = sub("#00FF66", "#00CC66", rainbow(10))) +
scale_x_continuous(breaks = scales::pretty_breaks(n = 7), expand = c(0, 0)) +
scale_y_continuous(breaks = scales::pretty_breaks(n = 10), expand = c(0, 0),
labels = scales::percent) +
theme(axis.text.x = element_text(angle = 315, hjust = 0, margin = ggplot2::margin(t = 0)),
strip.background = element_rect(colour = "grey20", fill = "grey20"),
strip.text = element_text(face = "bold"))
}
plotGGDC("BWA")Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.