Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fsum

Fast (Grouped, Weighted) Sum for Matrix-Like Objects


Description

fsum is a generic function that computes the (column-wise) sum of all values in x, (optionally) grouped by g and/or weighted by w (e.g. to calculate survey totals). The TRA argument can further be used to transform x using its (grouped, weighted) sum.

Usage

fsum(x, ...)

## Default S3 method:
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
     use.g.names = TRUE, ...)

## S3 method for class 'matrix'
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
     use.g.names = TRUE, drop = TRUE, ...)

## S3 method for class 'data.frame'
fsum(x, g = NULL, w = NULL, TRA = NULL, na.rm = TRUE,
     use.g.names = TRUE, drop = TRUE, ...)

## S3 method for class 'grouped_df'
fsum(x, w = NULL, TRA = NULL, na.rm = TRUE,
     use.g.names = FALSE, keep.group_vars = TRUE, keep.w = TRUE, ...)

Arguments

x

a numeric vector, matrix, data frame or grouped data frame (class 'grouped_df').

g

a factor, GRP object, atomic vector (internally converted to factor) or a list of vectors / factors (internally converted to a GRP object) used to group x.

w

a numeric vector of (non-negative) weights, may contain missing values.

TRA

an integer or quoted operator indicating the transformation to perform: 1 - "replace_fill" | 2 - "replace" | 3 - "-" | 4 - "-+" | 5 - "/" | 6 - "%" | 7 - "+" | 8 - "*" | 9 - "%%" | 10 - "-%%". See TRA.

na.rm

logical. Skip missing values in x. Defaults to TRUE and implemented at very little computational cost. If na.rm = FALSE a NA is returned when encountered.

use.g.names

logical. Make group-names and add to the result as names (default method) or row-names (matrix and data frame methods). No row-names are generated for data.table's.

drop

matrix and data.frame method: Logical. TRUE drops dimensions and returns an atomic vector if g = NULL and TRA = NULL.

keep.group_vars

grouped_df method: Logical. FALSE removes grouping variables after computation.

keep.w

grouped_df method: Logical. Retain summed weighting variable after computation (if contained in grouped_df).

...

arguments to be passed to or from other methods.

Details

Missing-value removal as controlled by the na.rm argument is done very efficiently by simply skipping them in the computation (thus setting na.rm = FALSE on data with no missing values doesn't give extra speed). Large performance gains can nevertheless be achieved in the presence of missing values if na.rm = FALSE, since then the corresponding computation is terminated once a NA is encountered and NA is returned (unlike sum which just runs through without any checks).

The weighted sum (i.e. survey total) is computed as sum(x * w). If na.rm = TRUE, missing values will be removed from both x and w i.e. utilizing only x[complete.cases(x,w)] and w[complete.cases(x,w)].

This all seamlessly generalizes to grouped computations, which are performed in a single pass (without splitting the data) and therefore extremely fast. See Benchmark and Examples below.

When applied to data frames with groups or drop = FALSE, fsum preserves all column attributes (such as variable labels) but does not distinguish between classed and unclassed objects. The attributes of the data frame itself are also preserved.

Value

The (w weighted) sum of x, grouped by g, or (if TRA is used) x transformed by its sum, grouped by g.

See Also

Examples

## default vector method
mpg <- mtcars$mpg
fsum(mpg)                         # Simple sum
fsum(mpg, w = mtcars$hp)          # Weighted sum (total): Weighted by hp
fsum(mpg, TRA = "%")              # Simple transformation: obtain percentages of mpg
fsum(mpg, mtcars$cyl)             # Grouped sum
fsum(mpg, mtcars$cyl, mtcars$hp)  # Weighted grouped sum (total)
fsum(mpg, mtcars[c(2,8:9)])       # More groups..
g <- GRP(mtcars, ~ cyl + vs + am) # Precomputing groups gives more speed !
fsum(mpg, g)
fmean(mpg, g) == fsum(mpg, g) / fNobs(mpg, g)
fsum(mpg, g, TRA = "%")           # Percentages by group

## data.frame method
fsum(mtcars)
fsum(mtcars, TRA = "%")
fsum(mtcars, g)
fsum(mtcars, g, TRA = "%")

## matrix method
m <- qM(mtcars)
fsum(m)
fsum(m, TRA = "%")
fsum(m, g)
fsum(m, g, TRA = "%")
\donttest{ 
## method for grouped data frames - created with dplyr::group_by or fgroup_by
library(dplyr)
mtcars %>% group_by(cyl,vs,am) %>% fsum(hp)  # Weighted grouped sum (total)
mtcars %>% fgroup_by(cyl,vs,am) %>% fsum(hp) # Equivalent and faster !!
mtcars %>% fgroup_by(cyl,vs,am) %>% fsum(TRA = "%")
mtcars %>% fgroup_by(cyl,vs,am) %>% fselect(mpg) %>% fsum
}

Benchmark

## This compares fsum with data.table (2 threads) and base::rowsum
# Starting with small data
mtcDT <- qDT(mtcars)
f <- qF(mtcars$cyl)

library(microbenchmark)
microbenchmark(mtcDT[, lapply(.SD, sum), by = f],
               rowsum(mtcDT, f, reorder = FALSE),
               fsum(mtcDT, f, na.rm = FALSE), unit = "relative")

                              expr        min         lq      mean    median        uq       max neval cld
 mtcDT[, lapply(.SD, sum), by = f] 145.436928 123.542134 88.681111 98.336378 71.880479 85.217726   100   c
 rowsum(mtcDT, f, reorder = FALSE)   2.833333   2.798203  2.489064  2.937889  2.425724  2.181173   100  b
     fsum(mtcDT, f, na.rm = FALSE)   1.000000   1.000000  1.000000  1.000000  1.000000  1.000000   100 a

# Now larger data
tdata <- qDT(replicate(100, rnorm(1e5), simplify = FALSE)) # 100 columns with 100.000 obs
f <- qF(sample.int(1e4, 1e5, TRUE))                        # A factor with 10.000 groups

microbenchmark(tdata[, lapply(.SD, sum), by = f],
               rowsum(tdata, f, reorder = FALSE),
               fsum(tdata, f, na.rm = FALSE), unit = "relative")

                              expr      min       lq     mean   median       uq       max neval cld
 tdata[, lapply(.SD, sum), by = f] 2.646992 2.975489 2.834771 3.081313 3.120070 1.2766475   100   c
 rowsum(tdata, f, reorder = FALSE) 1.747567 1.753313 1.629036 1.758043 1.839348 0.2720937   100  b
     fsum(tdata, f, na.rm = FALSE) 1.000000 1.000000 1.000000 1.000000 1.000000 1.0000000   100 a

collapse

Advanced and Fast Data Transformation

v1.5.3
GPL (>= 2) | file LICENSE
Authors
Sebastian Krantz [aut, cre], Matt Dowle [ctb], Arun Srinivasan [ctb], Laurent Berge [ctb], Dirk Eddelbuettel [ctb], Josh Pasek [ctb], Kevin Tappe [ctb], R Core Team and contributors worldwide [ctb], Martyn Plummer [cph], 1999-2016 The R Core Team [cph]
Initial release
2021-03-05

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.