This is a class of design based on DLE responses using the LogisticIndepBeta model model and efficacy responses using ModelEff model class without DLE and efficacy samples. It contain all slots in RuleDesign and TDDesign class object
This is a class of design based on DLE responses using the LogisticIndepBeta
model
model and efficacy responses using ModelEff
model class
without DLE and efficacy samples. It contain all slots in
RuleDesign
and TDDesign
class object
##Construct the DualResponsesDesign for simulations ##The design comprises the DLE and efficacy models, the escalation rule, starting data, ##a cohort size and a starting dose ##Define your data set first using an empty data set ## with dose levels from 25 to 300 with increments 25 data <- DataDual(doseGrid=seq(25,300,25),placebo=FALSE) ##First for the DLE model ##The DLE model must be of 'ModelTox' (e.g 'LogisticIndepBeta') class DLEmodel <- LogisticIndepBeta(binDLE=c(1.05,1.8), DLEweights=c(3,3), DLEdose=c(25,300), data=data) ##The efficacy model of 'ModelEff' (e.g 'Effloglog') class Effmodel<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300), nu=c(a=1,b=0.025),data=data,c=0) ##The escalation rule using the 'NextBestMaxGain' class mynextbest<-NextBestMaxGain(DLEDuringTrialtarget=0.35, DLEEndOfTrialtarget=0.3) ##The increments (see Increments class examples) ## 200% allowable increase for dose below 300 and 200% increase for dose above 300 myIncrements<-IncrementsRelative(intervals=c(25,300), increments=c(2,2)) ##cohort size of 3 mySize<-CohortSizeConst(size=3) ##Stop only when 36 subjects are treated myStopping <- StoppingMinPatients(nPatients=36) ##Now specified the design with all the above information and starting with a dose of 25 design <- DualResponsesDesign(nextBest=mynextbest, model=DLEmodel, Effmodel=Effmodel, stopping=myStopping, increments=myIncrements, cohortSize=mySize, data=data,startingDose=25)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.