Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ExpEff

Compute the expected efficacy based on a given dose, a given pseudo Efficacy log-log model and a given efficacy sample


Description

Compute the expected efficacy based on a given dose, a given pseudo Efficacy log-log model and a given efficacy sample

Usage

ExpEff(dose, model, samples, ...)

## S4 method for signature 'numeric,Effloglog,Samples'
ExpEff(dose, model, samples, ...)

## S4 method for signature 'numeric,Effloglog,missing'
ExpEff(dose, model, samples, ...)

## S4 method for signature 'numeric,EffFlexi,Samples'
ExpEff(dose, model, samples, ...)

Arguments

dose

the dose

model

the Effloglog class object

samples

the Samples class object (can also be missing)

...

unused

Methods (by class)

  • dose = numeric,model = Effloglog,samples = Samples: Method for the Effloglog class

  • dose = numeric,model = Effloglog,samples = missing: Compute the Expected Efficacy based a given dose and a given Pseudo Efficacy log log model without samples

  • dose = numeric,model = EffFlexi,samples = Samples: Compute the Expected Efficacy based a given dose, Efficacy Flexible model with samples

Examples

##Obtain the expected efficacy value for a given dose, a given pseudo 
## efficacy model and a given efficacy sample
##The efficacy model must be from 'ModelEff' class (model slot)
##The efficacy sample must be from 'Samples' class (sample slot)
emptydata<-DataDual(doseGrid=seq(25,300,25))
data<-emptydata
model<- EffFlexi(Eff=c(1.223, 2.513),Effdose=c(25,300),
                 sigma2=c(a=0.1,b=0.1),sigma2betaW=c(a=20,b=50),smooth="RW2",data=data)
options<-McmcOptions(burnin=100,step=2,samples=200)
set.seed(94)
samples<-mcmc(data=data,model=model,options=options)
## Given the dose 75 (dose slot)
ExpEff(dose=75,model=model,samples=samples)
##Obtain the expected efficacy value for a given dose and a given pseudo efficacy model 

##The efficacy model must be from 'ModelEff' class (model slot)
emptydata<-DataDual(doseGrid=seq(25,300,25),placebo=FALSE)
data<-emptydata

model<-Effloglog(Eff=c(1.223,2.513),Effdose=c(25,300),nu=c(a=1,b=0.025),data=data,c=0)


## Given the dose 75 (dose slot)
ExpEff(dose=75,model=model)
##Obtain the expected efficacy value for a given dose, the 'EffFlexi' efficacy model and 
##samples generated from this efficacy model
##The efficacy model must be from 'EffFlexi' class (model slot)
##The efficacy samples must be from 'Samples' class (samples slot)
model<- EffFlexi(Eff=c(1.223, 2.513),Effdose=c(25,300),
                 sigma2=c(a=0.1,b=0.1),sigma2betaW=c(a=20,b=50),smooth="RW2",data=data)
set.seed(94)
samples<-mcmc(data=data,model=model,options=options)
## Given the dose 75 (dose slot)
ExpEff(dose=75,model=model,samples=samples)

crmPack

Object-Oriented Implementation of CRM Designs

v1.0.0
GPL (>= 2)
Authors
Daniel Sabanes Bove [aut], Wai Yin Yeung [aut], Giuseppe Palermo [aut, cre], Thomas Jaki [aut]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.