Meta-analysis of movement-model parameters
These functions estimate population-level parameters from individual movement models and related estimates, including AKDE home-range areas, while taking into account estimation uncertainty.
meta(x,level=0.95,level.UD=0.95,method="MLE",IC="AICc",boot=FALSE,error=0.01,debias=TRUE, units=TRUE,plot=TRUE,sort=FALSE,mean=TRUE,col="black",...)
x |
A list of |
level |
Confidence level for parameter estimates. |
level.UD |
Coverage level for home-range estimates. E.g., 50% core home range. |
method |
Statistical estimator used—either maximum likelihood estimation based ( |
IC |
Information criterion to determine whether or not population variation can be estimated. Can be |
boot |
Perform a parametric bootstrap for confidence intervals and first-order bias correction if |
error |
Relative error tolerance for parametric bootstrap. |
debias |
Apply Bessel's inverse-Gaussian correction if |
units |
Convert result to natural units. |
plot |
Generate a meta-analysis forest plot. |
sort |
Sort individuals by their point estimates in forest plot. |
mean |
Include population mean estimate in forest plot. |
col |
Color(s) for individual labels and error bars. |
... |
Further arguments passed to |
So-far only the meta-analysis of home-range areas is implemented. More details will be provided in an upcomming manuscript.
For both estimator methods
, the same underlying model is assumed.
If x
constitutes a sampled population, then meta
returns a table with rows corresponding to the population mean and coefficient of variation.
If x
constitutes a list of sampled sub-populations, then meta
returns confidence intervals on the sub-population mean ratios.
The AICc formula is approximated via the Gaussian relation.
C. H. Fleming.
# load package and data library(ctmm) data(buffalo) # fit movement models FITS <- AKDES <- list() for(i in 1:length(buffalo)) { GUESS <- ctmm.guess(buffalo[[i]],interactive=FALSE) # use ctmm.select unless you are certain that the selected model is OUF FITS[[i]] <- ctmm.fit(buffalo[[i]],GUESS,trace=2) } # calculate AKDES on a consistent grid AKDES <- akde(buffalo,FITS,trace=1) # color to be spatially distinct COL <- color(AKDES,by='individual') # plot AKDEs plot(AKDES,col.DF=COL,col.level=COL,col.grid=NA,level=NA) # meta-analysis of buffalo meta(AKDES,col=c(COL,'black'),sort=TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.