Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

meta

Meta-analysis of movement-model parameters


Description

These functions estimate population-level parameters from individual movement models and related estimates, including AKDE home-range areas, while taking into account estimation uncertainty.

Usage

meta(x,level=0.95,level.UD=0.95,method="MLE",IC="AICc",boot=FALSE,error=0.01,debias=TRUE,
     units=TRUE,plot=TRUE,sort=FALSE,mean=TRUE,col="black",...)

Arguments

x

A list of ctmm movement-model objects, UD objects, or UD summary output, constituting a sampled population, or a list of such lists, each constituting a sampled sub-population.

level

Confidence level for parameter estimates.

level.UD

Coverage level for home-range estimates. E.g., 50% core home range.

method

Statistical estimator used—either maximum likelihood estimation based ("MLE") or approximate ‘best linear unbiased estimator’ ("BLUE").

IC

Information criterion to determine whether or not population variation can be estimated. Can be "AICc", AIC, or "BIC".

boot

Perform a parametric bootstrap for confidence intervals and first-order bias correction if debias=TRUE.

error

Relative error tolerance for parametric bootstrap.

debias

Apply Bessel's inverse-Gaussian correction if method="MLE", REML if method="BLUE", and an additional first-order correction if boot=TRUE.

units

Convert result to natural units.

plot

Generate a meta-analysis forest plot.

sort

Sort individuals by their point estimates in forest plot.

mean

Include population mean estimate in forest plot.

col

Color(s) for individual labels and error bars.

...

Further arguments passed to plot.

Details

So-far only the meta-analysis of home-range areas is implemented. More details will be provided in an upcomming manuscript.

For both estimator methods, the same underlying model is assumed.

Value

If x constitutes a sampled population, then meta returns a table with rows corresponding to the population mean and coefficient of variation. If x constitutes a list of sampled sub-populations, then meta returns confidence intervals on the sub-population mean ratios.

Note

The AICc formula is approximated via the Gaussian relation.

Author(s)

C. H. Fleming.

See Also

Examples

# load package and data
library(ctmm)
data(buffalo)

# fit movement models
FITS <- AKDES <- list()
for(i in 1:length(buffalo))
{
  GUESS <- ctmm.guess(buffalo[[i]],interactive=FALSE)
  # use ctmm.select unless you are certain that the selected model is OUF
  FITS[[i]] <- ctmm.fit(buffalo[[i]],GUESS,trace=2)
}

# calculate AKDES on a consistent grid
AKDES <- akde(buffalo,FITS,trace=1)

# color to be spatially distinct
COL <- color(AKDES,by='individual')

# plot AKDEs
plot(AKDES,col.DF=COL,col.level=COL,col.grid=NA,level=NA)

# meta-analysis of buffalo
meta(AKDES,col=c(COL,'black'),sort=TRUE)

ctmm

Continuous-Time Movement Modeling

v0.6.0
GPL-3
Authors
Christen H. Fleming [aut, cre], Justin M. Calabrese [aut], Xianghui Dong [ctb], Kevin Winner [ctb], Guillaume Péron [ctb], Michael J. Noonan [ctb], Bart Kranstauber [ctb], Eliezer Gurarie [ctb], Kamran Safi [ctb], Paul C. Cross [dtc], Thomas Mueller [dtc], Rogério C. de Paula [dtc], Thomas Akre [dtc], Jonathan Drescher-Lehman [dtc], Autumn-Lynn Harrison [dtc], Ronaldo G. Morato [dtc]
Initial release
2021-01-08

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.