Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

estSurvCens

Estimated Survival Function


Description

Estimates the marginal survival function G(T=t) of the censoring process. Compatible with single event and competing risks data.

Usage

estSurvCens(dataSet, timeColumn, eventColumns)

Arguments

dataSet

Data in original short format (data.frame).

timeColumn

Name of column with discrete time intervals (character scalar).

eventColumns

Names of the event columns of dataSet. In the competing risks case the event columns have to be in dummy encoding format (numeric vectors).

Value

Named vector of estimated survival function of the censoring process for all time points except the last theoretical interval.

Note

In the censoring survival function the last time interval [a_q, Inf) has the probability of zero.

Author(s)

References

Gerhard Tutz and Matthias Schmid, (2016), Modeling discrete time-to-event data, Springer series in statistics, Doi: 10.1007/978-3-319-28158-2

See Also

Examples

# Load unemployment data
library(Ecdat)
data(UnempDur)

# Select subsample
subUnempDur <- UnempDur [1:100, ]

######################
# Single event example

# Estimate censoring survival function G(t)
estG <- estSurvCens(dataSet=subUnempDur, timeColumn="spell", 
eventColumns="censor1")
estG

#########################
# Competing risks example

# Estimate censoring survival function G(t)
estG <- estSurvCens(dataSet=subUnempDur, timeColumn="spell", 
eventColumns=c("censor1", "censor2", "censor3", "censor4"))
estG

discSurv

Discrete Time Survival Analysis

v1.4.1
GPL-3
Authors
Thomas Welchowski <welchow@imbie.meb.uni-bonn.de> and Matthias Schmid <matthias.schmid@imbie.uni-bonn.de>
Initial release
2019-12-10

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.