Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

gaugeIndicator

Gauge Indicator


Description

This function processes stacks of essential biodiversity variables (ebv stacks) to gauge indicators related to horizontal ecosystem extent, degradation, fragmentation, among others. To sample the indicators in fixed-size grids across ebv stacks see sampleIndicator.

Usage

gaugeIndicator(pol, ind = "lsm_l_tafc", 
    ...)

Arguments

pol

RasterStack. ebv stack such as that produced by rsp2ebv.

ind

character. An ebv metric. 'lsm_l_tafc' computes total forest-cover areas (ha). See calculate_lsm to compute other metrics. Default ('lsm_l_tafc').

...

additional arguments in calculate_lsm.

Details

Coordinate system of the spatial units should be UTM. Metrics other than 'lsm_l_tafc' are calculated implementing calculate_lsm.

Value

tibble.

Author(s)

Wilson Lara Henao <wilarhen@temple.edu> [aut, cre], Victor Gutierrez-Velez [aut]

References

Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K., & Nowosad, J. (2019). landscapemetrics: an open source R tool to calculate landscape metrics. Ecography, 42(10), 1648-1657.

O'Connor, B., Secades, C., Penner, J., Sonnenschein, R., Skidmore, A., Burgess, N. D., & Hutton, J. M. (2015). Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote sensing in ecology and conservation, 1(1), 19-28.

Skidmore, A. K., & Pettorelli, N. (2015). Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. Nature, 523(7561), 403-406.

Examples

## Warnings from GDAL/PROJ are suppressed.

## Brick with structural Essential Biodiversity Variables covering the
## extent of a location in the northern Amazon basin (Colombia):

path. <- system.file('amazon.grd',package = 'ecochange')
amazon <- suppressWarnings(brick(path.))

## Tree-cover layers in the 'amazon' brick are both formatted and
## deforested:
suppressWarnings(
    def <- deforest(amazon, names(amazon)[grepl('TC', names(amazon))],
                    ebv.vals = 0:100,
                    remnant.areas = TRUE, keep.ebv = TRUE, mc.cores = 2)
)

## Binary layers of Forest and non-forest areas (keep.ebv = FALSE):

suppressWarnings(
    def_bin <- deforest(amazon, names(amazon)[grepl('TC', names(amazon))],
                        ebv.vals = 0:100,
                        remnant.areas = TRUE, keep.ebv = FALSE, mc.cores = 2)
)

## Areas for both the binary and the continuous forest layers:

defareas <- suppressWarnings(gaugeIndicator(def_bin, ind = 'lsm_c_ca'))
defclasses <- suppressWarnings(gaugeIndicator(def, ind = 'lsm_c_ca'))

## plot.gaugeIndicator method:

plot(defareas)
plot(defclasses)

ecochange

Integrating Ecological Remote Sensing Data to Derive EBV Metrics

v1.3
GPL-3
Authors
Wilson Lara Henao [aut, cre], Victor Gutierrez-Velez [aut]
Initial release
2020-10-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.