Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ecospat.ESM.threshold

Thresholds for Ensamble of Small Models


Description

This function evaluates the full model which is used for projections and provides thresholds to produce binary maps.

Usage

ecospat.ESM.threshold( ESM.EnsembleModeling.output, 
                           PEplot = FALSE)

Arguments

ESM.EnsembleModeling.output

a list object returned by ecospat.ESM.EnsembleModeling

PEplot

logical. Should the predicted to expected ratio along the suitability class from the boyce index be plotted. Default FALSE (see ecospat.boyce

Details

This function provides evaluation scores of the full model (no split sampling) and thresholds which can be used to convert suitability maps into binary maps. Various thresholds are provided: TSS (where sensitivity and specificity are maximised), MPA 1.0 (where all presences are prdicted positive), MPA 0.95 (where 95% of all presences are predicted positive), MPA 0.90 (where 90% of all presences are predicted positive), Boyce.th.min (the lowest suitability value where the predicted/expected ratio is >1) and Boyce.th.max (the highest suitability value where the predicted/expected ratio is =1).

Value

A data.frame with evluation scores and thresholds.

Author(s)

Frank Breiner frank.breiner@unil.ch

References

Hirzel, Alexandre H., et al. Evaluating the ability of habitat suitability models to predict species presences. Ecological modelling, 199.2 (2006): 142-152.

Engler, Robin, Antoine Guisan, and Luca Rechsteiner. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. Journal of applied ecology, 41.2 (2004): 263-274.

Fielding, Alan H., and John F. Bell. A review of methods for the assessment of prediction errors in conservation presence/absence models." Environmental conservation, 24.1 (1997): 38-49.

See Also

Examples

library(biomod2)

# Loading test data
data(ecospat.testNiche.inv)
inv <- ecospat.testNiche.inv

# species occurrences
xy <- inv[,1:2]
sp_occ <- inv[11]

# env
current <- inv[3:10]

### Formating the data with the BIOMOD_FormatingData() function from the package biomod2

sp <- 1
myBiomodData <- BIOMOD_FormatingData( resp.var = as.numeric(sp_occ[,sp]),
                                      expl.var = current,
                                      resp.xy = xy,
                                      resp.name = colnames(sp_occ)[sp])

### Calibration of simple bivariate models
my.ESM <- ecospat.ESM.Modeling( data=myBiomodData,
                                models=c('GLM','CTA'),
                                NbRunEval=2,
                                DataSplit=70,
                                weighting.score=c('AUC'),
                                parallel=FALSE)  

### Evaluation and average of simple bivariate models to ESMs
my.ESM_EF <- ecospat.ESM.EnsembleModeling(my.ESM,weighting.score=c('SomersD'),threshold=0)


output.TH <- ecospat.ESM.threshold(my.ESM_EF,PEplot = TRUE)

ecospat

Spatial Ecology Miscellaneous Methods

v3.2
GPL
Authors
Olivier Broennimann [cre, aut, ctb], Valeria Di Cola [aut, ctb], Blaise Petitpierre [ctb], Frank Breiner [ctb], Daniel Scherrer [ctb], Manuela D`Amen [ctb], Christophe Randin [ctb], Robin Engler [ctb], Wim Hordijk [ctb], Heidi Mod [ctb], Julien Pottier [ctb], Mirko Di Febbraro [ctb], Loic Pellissier [ctb], Dorothea Pio [ctb], Ruben Garcia Mateo [ctb], Anne Dubuis [ctb], Luigi Maiorano [ctb], Achilleas Psomas [ctb], Charlotte Ndiribe [ctb], Nicolas Salamin [ctb], Niklaus Zimmermann [ctb], Antoine Guisan [aut]
Initial release
2021-02-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.