Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ecospat.maxentvarimport

Maxent Variable Importance


Description

Calculate the importance of variables for Maxent in the same way Biomod does, by randomly permuting each predictor variable independently, and computing the associated reduction in predictive performance.

Usage

ecospat.maxentvarimport (model, dfvar, nperm)

Arguments

model

The name of the maxent model.

dfvar

A dataframe object with the environmental variables.

nperm

The number of permutations in the randomization process. The default is 5.

Details

The calculation is made as biomod2 "variables_importance" function. It's more or less base on the same principle than randomForest variables importance algorithm. The principle is to shuffle a single variable of the given data. Make model prediction with this 'shuffled' data.set. Then we compute a simple correlation (Pearson's by default) between references predictions and the 'shuffled' one. The return score is 1-cor(pred_ref,pred_shuffled). The highest the value, the more influence the variable has on the model. A value of this 0 assumes no influence of that variable on the model. Note that this technique does not account for interactions between the variables.

Value

a list which contains a data.frame containing variables importance scores for each permutation run.

Author(s)

Blaise Petitpierre bpetitpierre@gmail.com

Examples

library(dismo)
data('ecospat.testData')

# data for Soldanella alpina
data.Solalp<- ecospat.testData[c("Soldanella_alpina","ddeg","mind","srad","slp","topo")]

# copy maxent.jar file in the right folder
path.from<-system.file("extdata", "maxent.txt", package="ecospat")
path.to <- paste0(system.file(package="dismo"), "/java/maxent.txt")
path.to.renamed <- paste0(system.file(package="dismo"), "/java/maxent.jar")
file.copy(path.from,path.to,overwrite = TRUE)
file.rename(path.to, path.to.renamed)

if (file.exists(path.to.renamed) & require(rJava)) {
  me <- maxent(data.Solalp[,-1],data.Solalp[,1])
  ecospat.maxentvarimport (model=me, dfvar=data.Solalp[,-1], nperm=5)
  }

ecospat

Spatial Ecology Miscellaneous Methods

v3.2
GPL
Authors
Olivier Broennimann [cre, aut, ctb], Valeria Di Cola [aut, ctb], Blaise Petitpierre [ctb], Frank Breiner [ctb], Daniel Scherrer [ctb], Manuela D`Amen [ctb], Christophe Randin [ctb], Robin Engler [ctb], Wim Hordijk [ctb], Heidi Mod [ctb], Julien Pottier [ctb], Mirko Di Febbraro [ctb], Loic Pellissier [ctb], Dorothea Pio [ctb], Ruben Garcia Mateo [ctb], Anne Dubuis [ctb], Luigi Maiorano [ctb], Achilleas Psomas [ctb], Charlotte Ndiribe [ctb], Nicolas Salamin [ctb], Niklaus Zimmermann [ctb], Antoine Guisan [aut]
Initial release
2021-02-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.