Extract occupied patches of a species in geographic space.)
This function determines the occupied patch of a species using standard IUCN criteria (AOO, EOO) or predictive binary maps from Species Distribution Models.
ecospat.occupied.patch (bin.map, Sp.occ.xy, buffer = 0)
bin.map |
Binary map (single layer or raster stack) from a Species Distribution Model. |
Sp.occ.xy |
xy-coordinates of the species presence. |
buffer |
numeric. Calculate occupied patch models from the binary map using a buffer (predicted area occupied by the species or within a buffer around the species, for details see ?extract). |
Predictive maps derived from SDMs inform about the potential distribution (or habitat suitability) of a species. Often it is useful to get information about the area of the potential distribution which is occupied by a species, e.g. for Red List assessments.
a RasterLayer with value 1.
Frank Breiner frank.breiner@wsl.ch
IUCN Standards and Petitions Subcommittee. 2016. Guidelines for Using the IUCN Red List Categories and Criteria. Version 12. Prepared by the Standards and Petitions Subcommittee. Downloadable from http://www.iucnredlist.org/documents/RedListGuidelines.pdf
library(raster) library(dismo) ### make a maxent model # copy maxent.jar file in the right folder path.from<-system.file("extdata", "maxent.txt", package="ecospat") path.to <- paste0(system.file(package="dismo"), "/java/maxent.txt") path.to.renamed <- paste0(system.file(package="dismo"), "/java/maxent.jar") file.copy(path.from,path.to,overwrite = TRUE) file.rename(path.to, path.to.renamed) if (file.exists(path.to.renamed) & require(rJava) & require(igraph)) { # get predictor variables fnames <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''), pattern='grd', full.names=TRUE ) predictors <- stack(fnames) #plot(predictors) # file with presence points occurence <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='') occ <- read.table(occurence, header=TRUE, sep=',')[,-1] colnames(occ) <- c("x","y") occ <- ecospat.occ.desaggregation(occ,min.dist=1) # fit a domain model, biome is a categorical variable me <- maxent(predictors, occ, factors='biome') # predict to entire dataset pred <- predict(me, predictors) plot(pred) points(occ) } ### to convert suitability to binary map mpa.cutoff <- ecospat.mpa(pred,occ) pred.bin.mpa <- ecospat.binary.model(pred,mpa.cutoff) names(pred.bin.mpa) <- "me.mpa" pred.bin.arbitrary <- ecospat.binary.model(pred,0.5) names(pred.bin.arbitrary) <- "me.arbitrary" ### calculate occupied patch mpa.ocp <- ecospat.occupied.patch(pred.bin.mpa,occ) arbitrary.ocp <- ecospat.occupied.patch(pred.bin.arbitrary,occ) par(mfrow=c(1,2)) plot(mpa.ocp) ## occupied patches: green area points(occ,col="red",cex=0.5,pch=19) plot(arbitrary.ocp) points(occ,col="red",cex=0.5,pch=19) ## with buffer: mpa.ocp <- ecospat.occupied.patch(pred.bin.mpa,occ, buffer=500000) arbitrary.ocp <- ecospat.occupied.patch(pred.bin.arbitrary,occ, buffer=500000) plot(mpa.ocp) ## occupied patches: green area points(occ,col="red",cex=0.5,pch=19) plot(arbitrary.ocp) points(occ,col="red",cex=0.5,pch=19)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.