Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

J

Various modular functions


Description

Modular functions including Klein's modular function J (aka Dedekind's Valenz function J, aka the Klein invariant function, aka Klein's absolute invariant), the lambda function, and Delta.

Usage

J(tau, use.theta = TRUE, ...)
lambda(tau, ...)

Arguments

tau

tau; it is assumed that Im(tau)>0

use.theta

Boolean, with default TRUE meaning to use the theta function expansion, and FALSE meaning to evaluate g2 and g3 directly

...

Extra arguments sent to either theta1() et seq, or g2.fun() and g3.fun() as appropriate

Author(s)

Robin K. S. Hankin

References

K. Chandrasekharan 1985. Elliptic functions, Springer-Verlag.

Examples

J(2.3+0.23i,use.theta=TRUE)
 J(2.3+0.23i,use.theta=FALSE)

 #Verify that J(z)=J(-1/z):
 z <- seq(from=1+0.7i,to=-2+1i,len=20)
 plot(abs((J(z)-J(-1/z))/J(z)))

 # Verify that lamba(z) = lambda(Mz) where M is a modular matrix with b,c
 # even and a,d odd:

 M <- matrix(c(5,4,16,13),2,2)
 z <- seq(from=1+1i,to=3+3i,len=100)
 plot(lambda(z)-lambda(M %mob% z,maxiter=100))


#Now a nice little plot; vary n to change the resolution:
 n <- 50
 x <- seq(from=-0.1, to=2,len=n)
 y <- seq(from=0.02,to=2,len=n)

 z <- outer(x,1i*y,"+")
 f <- lambda(z,maxiter=40)
 g <- J(z)
 view(x,y,f,scheme=04,real.contour=FALSE,main="try higher resolution")
 view(x,y,g,scheme=10,real.contour=FALSE,main="try higher resolution")

elliptic

Weierstrass and Jacobi Elliptic Functions

v1.4-0
GPL-2
Authors
Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.