Various modular functions
Modular functions including Klein's modular function J (aka Dedekind's Valenz function J, aka the Klein invariant function, aka Klein's absolute invariant), the lambda function, and Delta.
J(tau, use.theta = TRUE, ...) lambda(tau, ...)
tau |
tau; it is assumed that |
use.theta |
Boolean, with default |
... |
Extra arguments sent to either |
Robin K. S. Hankin
K. Chandrasekharan 1985. Elliptic functions, Springer-Verlag.
J(2.3+0.23i,use.theta=TRUE) J(2.3+0.23i,use.theta=FALSE) #Verify that J(z)=J(-1/z): z <- seq(from=1+0.7i,to=-2+1i,len=20) plot(abs((J(z)-J(-1/z))/J(z))) # Verify that lamba(z) = lambda(Mz) where M is a modular matrix with b,c # even and a,d odd: M <- matrix(c(5,4,16,13),2,2) z <- seq(from=1+1i,to=3+3i,len=100) plot(lambda(z)-lambda(M %mob% z,maxiter=100)) #Now a nice little plot; vary n to change the resolution: n <- 50 x <- seq(from=-0.1, to=2,len=n) y <- seq(from=0.02,to=2,len=n) z <- outer(x,1i*y,"+") f <- lambda(z,maxiter=40) g <- J(z) view(x,y,f,scheme=04,real.contour=FALSE,main="try higher resolution") view(x,y,g,scheme=10,real.contour=FALSE,main="try higher resolution")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.