Calculates half periods in terms of e
Calculates half periods in terms of e
half.periods(ignore=NULL, e=NULL, g=NULL, primitive)
e |
e |
g |
g |
ignore |
Formal argument present to ensure that |
primitive |
Boolean, with default |
Parameter e=c(e1,e2,e3)
are the values of the Weierstrass
P function at the half periods:
e1=P(omega1), e2=P(omega2), e3=p(omega3)
where
omega1+omega2+omega3=0.
Also, e is given by the roots of the cubic equation x^3-g2*x-g3=0, but the problem is finding which root corresponds to which of the three elements of e.
Returns a pair of primitive half periods
Function parameters()
uses function half.periods()
internally, so do not use parameters()
to determine e
.
Robin K. S. Hankin
M. Abramowitz and I. A. Stegun 1965. Handbook of Mathematical Functions. New York, Dover.
half.periods(g=c(8,4)) ## Example 6, p665, LHS u <- half.periods(g=c(-10,2)) massage(c(u[1]-u[2] , u[1]+u[2])) ## Example 6, p665, RHS half.periods(g=c(10,2)) ## Example 7, p665, LHS u <- half.periods(g=c(7,6)) massage(c(u[1],2*u[2]+u[1])) ## Example 7, p665, RHS half.periods(g=c(1,1i, 1.1+1.4i)) half.periods(e=c(1,1i, 2, 1.1+1.4i)) g.fun(half.periods(g=c(8,4))) ## should be c(8,4)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.