Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

sn

Jacobi form of the elliptic functions


Description

Jacobian elliptic functions

Usage

ss(u,m, ...)
sc(u,m, ...)
sn(u,m, ...)
sd(u,m, ...)
cs(u,m, ...)
cc(u,m, ...)
cn(u,m, ...)
cd(u,m, ...)
ns(u,m, ...)
nc(u,m, ...)
nn(u,m, ...)
nd(u,m, ...)
ds(u,m, ...)
dc(u,m, ...)
dn(u,m, ...)
dd(u,m, ...)

Arguments

u

Complex argument

m

Parameter

...

Extra arguments, such as maxiter, passed to theta.?()

Details

All sixteen Jacobi elliptic functions.

Author(s)

Robin K. S. Hankin

References

M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover

See Also

Examples

#Example 1, p579:
nc(1.9965,m=0.64)
# (some problem here)

# Example 2, p579:
dn(0.20,0.19)

# Example 3, p579:
dn(0.2,0.81)

# Example 4, p580:
cn(0.2,0.81)

# Example 5, p580:
dc(0.672,0.36)

# Example 6, p580:
Theta(0.6,m=0.36)

# Example 7, p581:
cs(0.53601,0.09)

# Example 8, p581:
sn(0.61802,0.5)

#Example 9, p581:
sn(0.61802,m=0.5)

#Example 11, p581:
cs(0.99391,m=0.5)
# (should be 0.75 exactly)

#and now a pretty picture:

n <- 300
K <- K.fun(1/2)
f <- function(z){1i*log((z-1.7+3i)*(z-1.7-3i)/(z+1-0.3i)/(z+1+0.3i))}
# f <- function(z){log((z-1.7+3i)/(z+1.7+3i)*(z+1-0.3i)/(z-1-0.3i))}
x <- seq(from=-K,to=K,len=n)
y <- seq(from=0,to=K,len=n)
z <- outer(x,1i*y,"+")

view(x, y, f(sn(z,m=1/2)), nlevels=44, imag.contour=TRUE,
     real.cont=TRUE, code=1, drawlabels=FALSE,
     main="Potential flow in a rectangle",axes=FALSE,xlab="",ylab="")
rect(-K,0,K,K,lwd=3)

elliptic

Weierstrass and Jacobi Elliptic Functions

v1.4-0
GPL-2
Authors
Robin K. S. Hankin [aut, cre] (<https://orcid.org/0000-0001-5982-0415>)
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.