Jacobi form of the elliptic functions
Jacobian elliptic functions
ss(u,m, ...) sc(u,m, ...) sn(u,m, ...) sd(u,m, ...) cs(u,m, ...) cc(u,m, ...) cn(u,m, ...) cd(u,m, ...) ns(u,m, ...) nc(u,m, ...) nn(u,m, ...) nd(u,m, ...) ds(u,m, ...) dc(u,m, ...) dn(u,m, ...) dd(u,m, ...)
u |
Complex argument |
m |
Parameter |
... |
Extra arguments, such as |
All sixteen Jacobi elliptic functions.
Robin K. S. Hankin
M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover
#Example 1, p579: nc(1.9965,m=0.64) # (some problem here) # Example 2, p579: dn(0.20,0.19) # Example 3, p579: dn(0.2,0.81) # Example 4, p580: cn(0.2,0.81) # Example 5, p580: dc(0.672,0.36) # Example 6, p580: Theta(0.6,m=0.36) # Example 7, p581: cs(0.53601,0.09) # Example 8, p581: sn(0.61802,0.5) #Example 9, p581: sn(0.61802,m=0.5) #Example 11, p581: cs(0.99391,m=0.5) # (should be 0.75 exactly) #and now a pretty picture: n <- 300 K <- K.fun(1/2) f <- function(z){1i*log((z-1.7+3i)*(z-1.7-3i)/(z+1-0.3i)/(z+1+0.3i))} # f <- function(z){log((z-1.7+3i)/(z+1.7+3i)*(z+1-0.3i)/(z-1-0.3i))} x <- seq(from=-K,to=K,len=n) y <- seq(from=0,to=K,len=n) z <- outer(x,1i*y,"+") view(x, y, f(sn(z,m=1/2)), nlevels=44, imag.contour=TRUE, real.cont=TRUE, code=1, drawlabels=FALSE, main="Potential flow in a rectangle",axes=FALSE,xlab="",ylab="") rect(-K,0,K,K,lwd=3)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.