Jacobi theta functions 1-4
Computes Jacobi's four theta functions for complex z in terms of the parameter m or q.
theta1 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta2 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta3 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta4 (z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta.00(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta.01(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta.10(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) theta.11(z, ignore=NULL, m=NULL, q=NULL, give.n=FALSE, maxiter=30) Theta (u, m, ...) Theta1(u, m, ...) H (u, m, ...) H1(u, m, ...)
z,u |
Complex argument of function |
ignore |
Dummy variable whose intention is to force the user to
name the second argument either |
m |
Does not seem to have a name. The variable is introduced in section 16.1, p569 |
q |
The nome q, defined in section 16.27, p576 |
give.n |
Boolean with default |
maxiter |
Maximum number of iterations used. Note that the series generally converge very quickly |
... |
In functions that take it, extra arguments passed to
|
Should have a tol
argument.
Functions theta.00()
eq seq are just wrappers for
theta1()
et seq, following Whittaker and Watson's terminology
on p487; the notation does not appear in Abramowitz and Stegun.
theta.11() = theta1()
theta.10() = theta2()
theta.00() = theta3()
theta.01() = theta4()
Returns a complex-valued object with the same attributes as either
z
, or (m
or q
), whichever wasn't recycled.
Robin K. S. Hankin
M. Abramowitz and I. A. Stegun 1965. Handbook of mathematical functions. New York: Dover
m <- 0.5 derivative <- function(small){(theta1(small,m=m)-theta1(0,m=m))/small} right.hand.side1 <- theta2(0,m=m)*theta3(0,m=m)*theta4(0,m=m) right.hand.side2 <- theta1.dash.zero(m) derivative(1e-5)-right.hand.side1 #should be zero derivative(1e-5)-right.hand.side2 #should be zero
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.