The Generalized Pareto Distribution
Density function, distribution function, quantile function and random generation for the generalized Pareto distribution (GPD) with location, scale and shape parameters.
dgpd(x, loc=0, scale=1, shape=0, log = FALSE) pgpd(q, loc=0, scale=1, shape=0, lower.tail = TRUE) qgpd(p, loc=0, scale=1, shape=0, lower.tail = TRUE) rgpd(n, loc=0, scale=1, shape=0)
x, q |
Vector of quantiles. |
p |
Vector of probabilities. |
n |
Number of observations. |
loc, scale, shape |
Location, scale and shape parameters; the
|
log |
Logical; if |
lower.tail |
Logical; if |
The generalized Pareto distribution function (Pickands, 1975) with parameters \code{loc} = a, \code{scale} = b and \code{shape} = s is
G(z) = 1 - {1+s(z-a)/b}^(-1/s)
for 1+s(z-a)/b > 0 and z > a, where b > 0. If s = 0 the distribution is defined by continuity.
dgpd gives the density function, pgpd gives the
distribution function, qgpd gives the quantile function,
and rgpd generates random deviates.
Pickands, J. (1975) Statistical inference using extreme order statistics. Annals of Statistics, 3, 119–131.
dgpd(2:4, 1, 0.5, 0.8) pgpd(2:4, 1, 0.5, 0.8) qgpd(seq(0.9, 0.6, -0.1), 2, 0.5, 0.8) rgpd(6, 1, 0.5, 0.8) p <- (1:9)/10 pgpd(qgpd(p, 1, 2, 0.8), 1, 2, 0.8) ## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.