Parametric repeatabilities with covariance or correlation matrices
Using a multivariate normal model, random populations are generated using the suplied covariance matrix. A statistic is calculated on the random population and compared to the statistic calculated on the original matrix.
MonteCarloRep( cov.matrix, sample.size, ComparisonFunc, ..., iterations = 1000, correlation = FALSE, parallel = FALSE )
cov.matrix |
Covariance matrix. |
sample.size |
Size of the random populations. |
ComparisonFunc |
comparison function. |
... |
Aditional arguments passed to ComparisonFunc. |
iterations |
Number of random populations. |
correlation |
If TRUE, correlation matrix is used, else covariance matrix. MantelCor and MatrixCor should always uses correlation matrix. |
parallel |
If is TRUE and list is passed, computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
Since this function uses multivariate normal model to generate populations, only covariance matrices should be used, even when computing repeatabilities for covariances matrices.
returns the mean repeatability, or mean value of comparisons from samples to original statistic.
Diogo Melo Guilherme Garcia
cov.matrix <- RandomMatrix(5, 1, 1, 10)
MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, iterations = 20)
## Not run:
MonteCarloRep(cov.matrix, sample.size = 30, RandomSkewers, num.vectors = 100,
iterations = 20, correlation = TRUE)
MonteCarloRep(cov.matrix, sample.size = 30, MatrixCor, correlation = TRUE)
MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, iterations = 20)
MonteCarloRep(cov.matrix, sample.size = 30, KrzCor, correlation = TRUE)
#Creating repeatability vector for a list of matrices
mat.list <- RandomMatrix(5, 3, 1, 10)
laply(mat.list, MonteCarloRep, 30, KrzCor, correlation = TRUE)
##Multiple threads can be used with doMC library
##Windows:
#cl <- makeCluster(2)
#registerDoParallel(cl)
##Mac and Linux:
library(doParallel)
registerDoParallel(cores = 2)
MonteCarloRep(cov.matrix, 30, RandomSkewers, iterations = 100, parallel = TRUE)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.