Calculate mean values for various matrix statistics
Calculates: Mean Squared Correlation, ICV, Autonomy, ConditionalEvolvability, Constraints, Evolvability, Flexibility, Pc1Percent, Respondability.
MeanMatrixStatistics( cov.matrix, iterations = 1000, full.results = F, parallel = FALSE )
cov.matrix |
A covariance matrix |
iterations |
Number of random vectors to be used in calculating the stochastic statistics |
full.results |
If TRUE, full distribution of statistics will be returned. |
parallel |
if TRUE computations are done in parallel. Some foreach backend must be registered, like doParallel or doMC. |
dist Full distribution of stochastic statistics, only if full.resuts == TRUE
mean Mean value for all statistics
Diogo Melo Guilherme Garcia
Hansen, T. F., and Houle, D. (2008). Measuring and comparing evolvability and constraint in multivariate characters. Journal of evolutionary biology, 21(5), 1201-19. doi:10.1111/j.1420-9101.2008.01573.x
cov.matrix <- cov(iris[,1:4]) MeanMatrixStatistics(cov.matrix) #Multiple threads can be used with some foreach backend library, like doMC or doParallel #library(doParallel) ##Windows: #cl <- makeCluster(2) #registerDoParallel(cl) ##Mac and Linux: #registerDoParallel(cores = 2) #MeanMatrixStatistics(cov.matrix, parallel = TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.