Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

PropBeta

Beta distribution of proportions


Description

Probability mass function, distribution function and random generation for the reparametrized beta distribution.

Usage

dprop(x, size, mean, prior = 0, log = FALSE)

pprop(q, size, mean, prior = 0, lower.tail = TRUE, log.p = FALSE)

qprop(p, size, mean, prior = 0, lower.tail = TRUE, log.p = FALSE)

rprop(n, size, mean, prior = 0)

Arguments

x, q

vector of quantiles.

size

non-negative real number; precision or number of binomial trials.

mean

mean proportion or probability of success on each trial; 0 < mean < 1.

prior

(see below) with prior = 0 (default) the distribution corresponds to re-parametrized beta distribution used in beta regression. This parameter needs to be non-negative.

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Details

Beta can be understood as a distribution of x = k/φ proportions in φ trials where the average proportion is denoted as μ, so it's parameters become α = φμ and β = φ(1-μ) and it's density function becomes

f(x) = (x^(φμ+π-1) * (1-x)^(φ(1-μ)+π-1))/B(φμ+π, φ(1-μ)+π)

where π is a prior parameter, so the distribution is a posterior distribution after observing φμ successes and φ(1-μ) failures in φ trials with binomial likelihood and symmetric Beta(π, π) prior for probability of success. Parameter value π = 1 corresponds to uniform prior; π = 1/2 corresponds to Jeffreys prior; π = 0 corresponds to "uninformative" Haldane prior, this is also the re-parametrized distribution used in beta regression. With π = 0 the distribution can be understood as a continuous analog to binomial distribution dealing with proportions rather then counts. Alternatively φ may be understood as precision parameter (as in beta regression).

Notice that in pre-1.8.4 versions of this package, prior was not settable and by default fixed to one, instead of zero. To obtain the same results as in the previous versions, use prior = 1 in each of the functions.

References

Ferrari, S., & Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics, 31(7), 799-815.

Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods, 11(1), 54-71.

See Also

Examples

x <- rprop(1e5, 100, 0.33)
hist(x, 100, freq = FALSE)
curve(dprop(x, 100, 0.33), 0, 1, col = "red", add = TRUE)
hist(pprop(x, 100, 0.33))
plot(ecdf(x))
curve(pprop(x, 100, 0.33), 0, 1, col = "red", lwd = 2, add = TRUE)

n <- 500
p <- 0.23
k <- rbinom(1e5, n, p)
hist(k/n, freq = FALSE, 100)
curve(dprop(x, n, p), 0, 1, col = "red", add = TRUE, n = 500)

extraDistr

Additional Univariate and Multivariate Distributions

v1.9.1
GPL-2
Authors
Tymoteusz Wolodzko
Initial release
2020-08-20

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.