Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

TruncBinom

Truncated binomial distribution


Description

Density, distribution function, quantile function and random generation for the truncated binomial distribution.

Usage

dtbinom(x, size, prob, a = -Inf, b = Inf, log = FALSE)

ptbinom(q, size, prob, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)

qtbinom(p, size, prob, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)

rtbinom(n, size, prob, a = -Inf, b = Inf)

Arguments

x, q

vector of quantiles.

size

number of trials (zero or more).

prob

probability of success on each trial.

a, b

lower and upper truncation points (a < x <= b).

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

Examples

x <- rtbinom(1e5, 100, 0.83, 76, 86)
xx <- seq(0, 100)
plot(prop.table(table(x)))
lines(xx, dtbinom(xx, 100, 0.83, 76, 86), col = "red")
hist(ptbinom(x, 100, 0.83, 76, 86))

xx <- seq(0, 100, by = 0.01)
plot(ecdf(x))
lines(xx, ptbinom(xx, 100, 0.83, 76, 86), col = "red", lwd = 2)
uu <- seq(0, 1, by = 0.001)
lines(qtbinom(uu, 100, 0.83, 76, 86), uu, col = "blue", lty = 2)

extraDistr

Additional Univariate and Multivariate Distributions

v1.9.1
GPL-2
Authors
Tymoteusz Wolodzko
Initial release
2020-08-20

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.