Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

TruncPoisson

Truncated Poisson distribution


Description

Density, distribution function, quantile function and random generation for the truncated Poisson distribution.

Usage

dtpois(x, lambda, a = -Inf, b = Inf, log = FALSE)

ptpois(q, lambda, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)

qtpois(p, lambda, a = -Inf, b = Inf, lower.tail = TRUE, log.p = FALSE)

rtpois(n, lambda, a = -Inf, b = Inf)

Arguments

x, q

vector of quantiles.

lambda

vector of (non-negative) means.

a, b

lower and upper truncation points (a < x <= b).

log, log.p

logical; if TRUE, probabilities p are given as log(p).

lower.tail

logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x].

p

vector of probabilities.

n

number of observations. If length(n) > 1, the length is taken to be the number required.

References

Plackett, R.L. (1953). The truncated Poisson distribution. Biometrics, 9(4), 485-488.

Singh, J. (1978). A characterization of positive Poisson distribution and its statistical application. SIAM Journal on Applied Mathematics, 34(3), 545-548.

Dalgaard, P. (May 1, 2005). [R] simulate zero-truncated Poisson distribution. R-help mailing list. https://stat.ethz.ch/pipermail/r-help/2005-May/070680.html

Examples

x <- rtpois(1e5, 14, 16)
xx <- seq(-1, 50)
plot(prop.table(table(x)))
lines(xx, dtpois(xx, 14, 16), col = "red")
hist(ptpois(x, 14, 16))

xx <- seq(0, 50, by = 0.01)
plot(ecdf(x))
lines(xx, ptpois(xx, 14, 16), col = "red", lwd = 2)

uu <- seq(0, 1, by = 0.001)
lines(qtpois(uu, 14, 16), uu, col = "blue", lty = 2)

# Zero-truncated Poisson

x <- rtpois(1e5, 5, 0)
xx <- seq(-1, 50)
plot(prop.table(table(x)))
lines(xx, dtpois(xx, 5, 0), col = "red")
hist(ptpois(x, 5, 0))

xx <- seq(0, 50, by = 0.01)
plot(ecdf(x))
lines(xx, ptpois(xx, 5, 0), col = "red", lwd = 2)
lines(qtpois(uu, 5, 0), uu, col = "blue", lty = 2)

extraDistr

Additional Univariate and Multivariate Distributions

v1.9.1
GPL-2
Authors
Tymoteusz Wolodzko
Initial release
2020-08-20

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.