Computation of the critical value in the hill.adapt function
For a given kernel function, compute the critical value (CritVal) of the test statistic in the hill.adapt function by Monte-Carlo simulations.
CriticalValue(NMC, n, kernel = TruncGauss.kernel, kpar = NULL, prob = 0.95, gridlen = 100, initprop = 0.1, r1 = 0.25, r2 = 0.05, plot = FALSE)
| NMC | the number of Monte-Carlo simulations. | 
| n | the sample size. | 
| kernel | a kernel function for which the critical value is computed. The available kernel functions are Epanechnikov, Triangular, Truncated Gaussian, Biweight and Rectangular. The truncated gaussian kernel is by default. | 
| kpar | a value for the kernel function parameter, with no default value. | 
| prob | a vector of type 1 errors. | 
| gridlen, initprop, r1, r2 | parameters used in the function hill.adapt (see  | 
| plot | If  | 
For the type 1 errors prob, this function returns the critical values.
Durrieu, G. and Grama, I. and Pham, Q. and Tricot, J.- M (2015). Nonparametric adaptive estimator of extreme conditional tail probabilities quantiles. Extremes, 18, 437-478.
n <- 1000
NMC <- 500
prob <- c(0.99)
## Not run:  #For computing time purpose
  CriticalValue(NMC, n, TruncGauss.kernel, kpar = c(sigma = 1), prob, gridlen = 100 ,
                initprop = 1/10, r1 = 1/4, r2 = 1/20, plot = TRUE)
## End(Not run)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.