Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist-nigMoments

Moments for the Normal Inverse Gaussian


Description

Computes the first four moments for the normal inverse Gaussian distribution.

Usage

nigMean(alpha = 1, beta = 0, delta = 1, mu = 0)
nigVar(alpha = 1, beta = 0, delta = 1, mu = 0)
nigSkew(alpha = 1, beta = 0, delta = 1, mu = 0)
nigKurt(alpha = 1, beta = 0, delta = 1, mu = 0)

Arguments

alpha, beta, delta, mu

are numeric values where alpha is the location parameter, beta is the location parameter, delta is the first shape parameter, and mu is the second shape parameter.

Value

All values for the *nig functions are numeric vectors: d* returns the density, p* returns the distribution function, q* returns the quantile function, and r* generates random deviates.

All values have attributes named "param" listing the values of the distributional parameters.

Author(s)

Diethelm Wuertz.

References

Scott, D. J., Wuertz, D. and Tran, T. T. (2008) Moments of the Generalized Hyperbolic Distribution. Preprint.

Examples

## nigMean -
   # Median:
   nigMean(alpha = 1, beta = 0, delta = 1, mu = 0)
 
## nigVar - 
   # Inter-quartile Range:
   nigVar(alpha = 1, beta = 0, delta = 1, mu = 0)
 
## nigSKEW -  
   # Robust Skewness:
   nigSkew(alpha = 1, beta = 0, delta = 1, mu = 0)
   
## nigKurt -
   # Robust Kurtosis:
   nigKurt(alpha = 1, beta = 0, delta = 1, mu = 0)

fBasics

Rmetrics - Markets and Basic Statistics

v3042.89.1
GPL (>= 2)
Authors
Diethelm Wuertz [aut], Tobias Setz [cre], Yohan Chalabi [ctb] Martin Maechler [ctb]
Initial release
2017-11-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.