Parameters for MPC CPI Inflation Projections from Q1 2004 to Q4 2013.
Numerical parameters for inflation report of the Bank of England used to specify the probability distributions for forecast charts of CPI inflation. Data formatted from the November 2013 Bank of England Inflation Report.
data(boe)
A data frame with 512 observations on the following 5 variables.
time0
Publication time of parameters
time
Future time of projected parameter
mode
Central location parameter of split-normal distribution
uncertainty
Uncertainty parameter of split-normal distribution
skew
Skew parameter of split-normal distribution
mode, uncertainty and skew parameters relate to those given in dsplitnorm
, where uncertainty is the standard deviation.
Bank of England Inflation Report November 2013. Retrieved from "Parameters for MPC CPI Inflation Projections from February 2004" spreadsheet at:
http://www.bankofengland.co.uk/publications/pages/inflationreport/irprobab.aspx
## ##Q1 2013 ## #extract data for Q1 2013 y0 <- 2013 boe0<-subset(boe, time0==y0) k <- nrow(boe0) #guess work to set percentiles the boe are plotting p <- seq(0.05, 0.95, 0.05) p <- c(0.01, p, 0.99) #estimate percentiles for future time period pp <- matrix(NA, nrow = length(p), ncol = k) for (i in 1:k) pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i]) pp #plot cpi par(mar=rep(2,4)) plot(cpi, type = "l", xlim = floor(c(y0-5, y0+3)), ylim = c(-2, 7), las = 1, col="tomato", lwd=2, xaxt = "n", yaxt = "n") #backround rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90") #fan pal <- colorRampPalette(c("tomato", "gray90")) fan(data=pp, probs=p, sim.data=FALSE, start=y0, frequency=4, anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=FALSE) #aesthetics for boe axis axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE) axis(4, at = -2:7, las = 2, tcl = 0.5) axis(1, at = 2008:2016, tcl = 0.5) axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2) abline(h = 2) #cpi target abline(v = y0 + 1.75, lty = 2) #2 year line ## ##Q4 2013 (coarser fan) ## #extract data for Q4 2013 y0 <- 2013.75 boe0<-subset(boe, time0==y0) k <- nrow(boe0) #guess work at which percentiles the boe are plotting p <- seq(0.2, 0.8, 0.2) p <- c(0.05, p, 0.95) pp <- matrix(NA, nrow = length(p), ncol = k) for (i in 1:k) pp[, i] <- qsplitnorm(p, mode = boe0$mode[i], sd = boe0$uncertainty[i], skew = boe0$skew[i]) pp #define prediction intervals for labels p.int<-p[4:6]-p[3:1] p.int #plot cpi par(mar=rep(2,4)) plot(cpi, type = "l", xlim = c(y0-5, y0+3), ylim = c(-2, 7), las = 1, col="tomato", lwd=2, xaxt = "n", yaxt = "n") #backround rect(y0-0.25, par("usr")[3] - 1, y0+3, par("usr")[4] + 1, border = "gray90", col = "gray90") # add fan pal <- colorRampPalette(c("tomato", "gray90")) fan(data=pp, probs=p.int, sim.data=FALSE, start=y0, frequency=4, anchor=cpi[time(cpi)==y0-0.25], fan.col=pal, ln=NULL, rlab=pi, nfan=4, type="interval") #aesthetics for boe axis axis(2, at = -2:7, las = 2, tcl = 0.5, labels = FALSE) axis(4, at = -2:7, las = 2, tcl = 0.5) axis(1, at = 2008:2016, tcl = 0.5) axis(1, at = seq(2008, 2016, 0.25), labels = FALSE, tcl = 0.2) abline(h = 2) #cpi target abline(v = y0 + 1.75, lty = 2) #2 year line
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.