ConvLayer
Create a sequence of convolutional ('ni' to 'nf'), ReLU (if 'use_activ') and 'norm_type' layers.
ConvLayer( ni, nf, ks = 3, stride = 1, padding = NULL, bias = NULL, ndim = 2, norm_type = 1, bn_1st = TRUE, act_cls = nn()$ReLU, transpose = FALSE, init = "auto", xtra = NULL, bias_std = 0.01, dilation = 1, groups = 1, padding_mode = "zeros" )
ni |
number of inputs |
nf |
outputs/ number of features |
ks |
kernel size |
stride |
stride |
padding |
padding |
bias |
bias |
ndim |
dimension number |
norm_type |
normalization type |
bn_1st |
batch normalization 1st |
act_cls |
activation |
transpose |
transpose |
init |
initializer |
xtra |
xtra |
bias_std |
bias standard deviation |
dilation |
specify the dilation rate to use for dilated convolution |
groups |
groups size |
padding_mode |
padding mode, e.g 'zeros' |
None
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.