Wgan
Create a WGAN from 'data', 'generator' and 'critic'.
GANLearner_wgan( dls, generator, critic, switcher = NULL, clip = 0.01, switch_eval = FALSE, gen_first = FALSE, show_img = TRUE, cbs = NULL, metrics = NULL, opt_func = Adam(), lr = 0.001, splitter = trainable_params, path = NULL, model_dir = "models", wd = NULL, wd_bn_bias = FALSE, train_bn = TRUE, moms = list(0.95, 0.85, 0.95) )
dls |
dataloader |
generator |
generator |
critic |
critic |
switcher |
switcher |
clip |
clip value |
switch_eval |
switch evaluation |
gen_first |
generator first |
show_img |
show image or not |
cbs |
callbacks |
metrics |
metrics |
opt_func |
optimization function |
lr |
learning rate |
splitter |
splitter |
path |
path |
model_dir |
model directory |
wd |
weight decay |
wd_bn_bias |
weight decay bn bias |
train_bn |
It controls if BatchNorm layers are trained even when they are supposed to be frozen according to the splitter. |
moms |
momentums |
None
## Not run: learn = GANLearner_wgan(dls, generator, critic, opt_func = partial(Adam(), mom=0.)) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.