UnetBlock
A quasi-UNet block, using 'PixelShuffle_ICNR upsampling'.
UnetBlock( up_in_c, x_in_c, hook, final_div = TRUE, blur = FALSE, act_cls = nn()$ReLU, self_attention = FALSE, init = nn()$init$kaiming_normal_, norm_type = NULL, ks = 3, stride = 1, padding = NULL, bias = NULL, ndim = 2, bn_1st = TRUE, transpose = FALSE, xtra = NULL, bias_std = 0.01, dilation = 1, groups = 1, padding_mode = "zeros" )
up_in_c |
up_in_c parameter |
x_in_c |
x_in_c parameter |
hook |
The hook is set to this intermediate layer to store the output needed for this block. |
final_div |
final div |
blur |
blur is used to avoid checkerboard artifacts at each layer. |
act_cls |
activation |
self_attention |
self_attention determines if we use a self-attention layer |
init |
initializer |
norm_type |
normalization type |
ks |
kernel size |
stride |
stride |
padding |
padding mode |
bias |
bias |
ndim |
number of dimensions |
bn_1st |
batch normalization 1st |
transpose |
transpose |
xtra |
xtra |
bias_std |
bias standard deviation |
dilation |
dilation |
groups |
groups |
padding_mode |
The mode of padding |
None
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.